ﻻ يوجد ملخص باللغة العربية
In a joint theoretical and experimental study we investigate the pressure dependence of the Eu valence in EuPd_3B_x (0 <= x <= 1). Density functional band structure calculations are combined with x-ray absorption and x-ray diffraction measurements under hydrostatic pressures up to 30 GPa. It is observed that the heterogenous mixed-valence state of Eu in EuPd_3B_x (x >= 0.2) can be suppressed partially in this pressure range. From the complementary measurements we conclude that the valence change in EuPd_3B_x is mainly driven by the number of additional valence electrons due to the insertion of boron, whereas the volume change is a secondary effect. A similar valence change of Eu in Eu_{1-x}La_xPd_3 is predicted for x >= 0.4, in line with the suggested electron count scenario.
Combining old and new de Haas-van Alphen (dHvA) and magnetoresistance data, we arrive at a detailed picture of the Fermi surface of the heavy fermion superconductor UPt3. Our work was partially motivated by a new proposal that two 5f valence electron
We have investigated the optical conductivity of the prominent valence fluctuating compounds EuIr2Si2 and EuNi2P2 in the infrared energy range to get new insights into the electronic properties of valence fluctuating systems. For both compounds we ob
The intermediate valent systems TmSe and SmB6 have been investigated up to 16 and 18 GPa by ac microcalorimetry with a pressure (p) tuning realized in situ at low temperature. For TmSe, the transition from an antiferromagnetic insulator for p<3 GPa t
We investigated the thermoelectric transport properties of EuNi2P2 and EuIr2Si2 in order to evaluate the relevance of Kondo interaction and valence fluctuations in these materials. While the thermal conductivities behave conventionally, the thermopow
The compound EuPd2Si2 is a well-known valence-fluctuating compound with a largest variation of Eu valence in a narrow temperature interval (around 150 K). The ball-milled form of this compound was investigated to understand the Eu valence behavior in