ﻻ يوجد ملخص باللغة العربية
Finite element exterior calculus (FEEC) has been developed over the past decade as a framework for constructing and analyzing stable and accurate numerical methods for partial differential equations by employing differential complexes. The recent work of Arnold, Falk and Winther cite{ArFaWi2010} includes a well-developed theory of finite element methods for Hodge Laplace problems, including a priori error estimates. In this work we focus on developing a posteriori error estimates in which the computational error is bounded by some computable functional of the discrete solution and problem data. More precisely, we prove a posteriori error estimates of residual type for Arnold-Falk-Winther mixed finite element methods for Hodge-de Rham Laplace problems. While a number of previous works consider a posteriori error estimation for Maxwells equations and mixed formulations of the scalar Laplacian, the approach we take is distinguished by unified treatment of the various Hodge Laplace problems arising in the de Rham complex, consistent use of the language and analytical framework of differential forms, and the development of a posteriori error estimates for harmonic forms and the effects of their approximation on the resulting numerical method for the Hodge Laplacian.
In this work we study a residual based a posteriori error estimation for the CutFEM method applied to an elliptic model problem. We consider the problem with non-polygonal boundary and the analysis takes into account the geometry and data approximati
We describe discretisations of the shallow water equations on the sphere using the framework of finite element exterior calculus, which are extensions of the mimetic finite difference framework presented in Ringler, Thuburn, Klemp, and Skamarock (Jou
For the Hodge--Laplace equation in finite element exterior calculus, we introduce several families of discontinuous Galerkin methods in the extended Galerkin framework. For contractible domains, this framework utilizes seven fields and provides a uni
The Richards equation is commonly used to model the flow of water and air through soil, and it serves as a gateway equation for multiphase flows through porous media. It is a nonlinear advection-reaction-diffusion equation that exhibits both paraboli
Many practical problems occur due to the boundary value problem. This paper evaluates the finite element solution of the boundary value problem of Poissons equation and proposes a novel a posteriori local error estimation based on the Hypercircle met