ﻻ يوجد ملخص باللغة العربية
The precise measurement of hadronic jet energy is crucial to maximise the physics reach of a future Linear Collider. An important ingredient required to achieve this is the efficient identification of photons within hadronic showers. One configuration of the ILD detector concept employs a highly granular silicon-tungsten sampling calorimeter to identify and measure photons, and the GARLIC algorithm described in this paper has been developed to identify photons in such a calorimeter. We describe the algorithm and characterise its performance using events fully simulated in a model of the ILD detector.
In order to profit from the high granularity of the calorimeters proposed for the ILC that are suitable for the Particle Flow Approach, specialised clustering algorithms have to be developped. GARLIC is such an algorithm with the goal to find and ide
We describe a start-timing detector for the PHENIX experiment at the relativistic heavy-ion collider RHIC. The role of the detector is to detect a nuclear collision, provide precise time information with an accuracy of 50ps, and determine the collisi
We report on the progress in flavor identification tools developed for a future $e^+e^-$ linear collider such as the International Linear Collider (ILC) and Compact Linear Collider (CLIC). Building on the work carried out by the LCFIVertex collaborat
Druid is a dedicated event display designed for the future electron positron linear colliders. Druid takes standard linear collider data files and detector geometry description files as input, it can visualize both physics event and detector geometry
The DEPFET collaboration develops highly granular, ultra-transparent active pixel detectors for high-performance vertex reconstruction at future collider experiments. The characterization of detector prototypes has proven that the key principle, the