ترغب بنشر مسار تعليمي؟ اضغط هنا

Superconducting gap structure of the 115s revisited

100   0   0.0 ( 0 )
 نشر من قبل Filip Ronning
 تاريخ النشر 2012
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Density functional theory calculations of the electronic structure of Ce- and Pu-based heavy fermion superconductors in the so-called 115 family are performed. The gap equation is used to consider which superconducting order parameters are most favorable assuming a pairing interaction that is peaked at (pi,pi,q_z) - the wavevector for the antiferromagnetic ordering found in close proximity. In addition to the commonly accepted $d_{x^2-y^2}$ order parameter, there is evidence that an extended s-wave order parameter with nodes is also plausible. We discuss whether these results are consistent with current observations and possible measurements that could help distinguish between these scenarios.

قيم البحث

اقرأ أيضاً

The superconducting gap structure of a topological crystalline insulator (TCI) candidate ZrRuAs ($T^{rm on}_{rm c}$ = 7.9(1) K) with a noncentrosymmetric crystal structure has been investigated using muon spin rotation/relaxation ($mu$SR) measurement s in transverse-field (TF) and zero-field (ZF) geometries. We also present the results of magnetization, electrical resistivity and heat capacity measurements on ZrRuAs, which reveal bulk superconductivity below 7.9~K. The temperature dependence of the effective penetration depth obtained from the analysis of the TF-$mu$SR spectra below $T_{rm c}$ is well described by an isotropic $s$-wave gap model as also inferred from an analysis of the heat capacity in the superconducting state. ZF $mu$SR data do not show any significant change in the muon spin relaxation rate above and below the superconducting transition temperature indicating that time-reversal symmetry is preserved in the superconducting state of this material.
We report measurements of the London penetration depth [$Deltalambda(T)$] of the recently discovered iron-based superconductor (Li$_{1-x}$Fe$_x$)OHFeSe, in order to characterize the nature of the superconducting gap structure. At low temperatures, $D eltalambda(T)$ displays nearly temperature independent behavior, indicating a fully open superconducting gap. We also analyze the superfluid density $rho_s(T)$ which cannot be well accounted for by a single-gap isotropic $s$-wave model but are consistent with either two-gaps, a model for the orbital selective $stimestau_3$ state or anisotropic $s$-wave superconductivity.
Recent superconducting gap classifications based on space group symmetry have revealed nontrivial gap structures that were not shown by point group symmetry. First, we review a comprehensive classification of symmetry-protected line nodes within the range of centrosymmetric space groups. Next, we show an additional constraint; line nodes peculiar to nonsymmorphic systems appear only for primitive or orthorhombic base-centered Bravais lattice. Then, we list useful classification tables of 59 primitive or orthorhombic base-centered space groups for the superconducting gap structures. Furthermore, our gap classification reveals the $j_z$-dependent point nodes (gap opening) appearing on a 3- or 6-fold axis, which means that the presence (absence) of point nodes depends on the Bloch-state angular momentum $j_z$. We suggest that this unusual gap structure is realized in a heavy-fermion superconductor UPt$_3$, using a group-theoretical analysis and a numerical calculation. The calculation demonstrates that a Bloch phase contributes to $j_z$ as effective orbital angular momentum by site permutation. We also discuss superconducting gap structures in MoS$_2$, SrPtAs, UBe$_{13}$, and PrOs$_4$Sb$_{12}$.
We have obtained strong experimental evidence for the full determination of the superconducting gap structure in all three bands of the spin-triplet superconductor Sr2RuO4 for the first time. We have extended the measurements of the field-orientation dependent specific heat to include conical field rotations consisting of in-plane azimuthal angle phi-sweeps at various polar angles theta performed down to 0.1 K. Clear 4-fold oscillations of the specific heat and a rapid suppression of it by changing theta are explained only by a compensation from two types of bands with anti-phase gap anisotropies with each other. The results indicate that the active band, responsible for the superconducting instability, is the gamma-band with the lines of gap minima along the [100] directions, and the passive band is the alpha- and beta-bands with the lines of gap minima or zeros along the [110] directions in their induced superconducting gaps. We also demonstrated the scaling of the specific heat for the field in the c-direction, which supports the line-node-like gap structures running along the kz direction.
In order to identify the gap structure of CeIrIn5, we measured field-angle-resolved specific heat C(phi) by conically rotating the magnetic field H around the c axis at low temperatures down to 80 mK. We revealed that C(phi) exhibits a fourfold angul ar oscillation, whose amplitude decreases monotonically by tilting H out of the ab plane. Detailed microscopic calculations based on the quasiclassical Eilenberger equation confirm that the observed features are uniquely explained by assuming the dx2-y2-wave gap. These results strongly indicate that CeIrIn5 is a dx2-y2-wave superconductor and suggest the universal pairing mechanism in CeMIn5 (M = Co, Rh, and Ir).
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا