ﻻ يوجد ملخص باللغة العربية
We have investigated the magnetic properties of carbon powders which consist of nanodisks, nanocones, and a small fraction of carbon-black particles. Magnetization measurements were carried out using a superconducting quantum interference device in magnetic fields $-5<mu_{0}H<5:mathrm{T}$ for temperatures in the range $2leq T<350:mathrm{K}$. Measurements of the magnetization $M$ versus temperature $T$ and magnetic field $mu_{0}H$ for these carbon samples show diamagnetism and paramagetism with an additional ferromagnetic contribution. The ferromagnetic magnetization is in agreement with the calculated magnetization from Fe impurities as determined by the particle-induced x-ray emission method ($<75:mumathrm{g/g}$). Magnetization measurements in weak magnetic fields show thermal hysteresis, and for strong fields the magnetization $M$ decreases as $Msim aT^{-alpha}$ with $alpha<1$, which is slower than the Curie law ($alpha=1$), when the temperature increases. The magnetization $M$ versus magnetic field $mu_{0}H$ shows paramagnetic free-spin $S=frac{1}{2}$ and $frac{3}{2}$ behaviors for temperatures $T=2:mathrm{K}$ and $15leq Tleq50:mathrm{K}$, respectively. A tendency for localization of electrons was found by electron spin resonance when the temperature $T$ decreases ($2<T<40:mathrm{K}$). The magnetic properties in these carbon cone and disk powder samples are more complex than a free-spin model predicts, which is apparently valid only for the temperature $T=2:mathrm{K}$.
We show that carbon-doped hexagonal boron nitride (h-BN) has extraordinary properties with many possible applications. We demonstrate that the substitution-induced impurity states, associated with carbon atoms, and their interactions dictate the elec
Understanding the magnetic properties of graphenic nanostructures is instrumental in future spintronics applications. These magnetic properties are known to depend crucially on the presence of defects. Here we review our recent theoretical studies us
Graphene and single-wall carbon nanotube (SWCNT) have attracted great attention because of their ultra-high thermal conductivity. However, there are few works exploring the relations of their thermal conductivity quantitatively. The carbon nanocone (
We present a comprehensive study of the properties of the off-resonant conductance spectrum in oligomer nanojunctions between graphitic electrodes. By employing first-principle-based methods and the Landauer approach of quantum transport, we identify
We produce 120 um thick buckypapers from aligned carbon nanotubes. Transport characteristics evidence ohmic behavior in a wide temperature range, non linearity appearing in the current-voltage curves only close to 4.2 K. The temperature dependence of