ترغب بنشر مسار تعليمي؟ اضغط هنا

Certificates of Impossibility of Hilbert-Artin Representations of a Given Degree for Definite Polynomials and Functions

44   0   0.0 ( 0 )
 نشر من قبل Feng Guo
 تاريخ النشر 2012
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

We deploy numerical semidefinite programming and conversion to exact rational inequalities to certify that for a positive semidefinite input polynomial or rational function, any representation as a fraction of sums-of-squares of polynomials with real coefficients must contain polynomials in the denominator of degree no less than a given input lower bound. By Artins solution to Hilberts 17th problems, such representations always exist for some denominator degree. Our certificates of infeasibility are based on the generalization of Farkass Lemma to semidefinite programming. The literature has many famous examples of impossibility of SOS representability including Motzkins, Robinsons, Chois and Lams polynomials, and Reznicks lower degree bounds on uniform denominators, e.g., powers of the sum-of-squares of each variable. Our work on exact certificates for positive semidefiniteness allows for non-uniform denominators, which can have lower degree and are often easier to convert to exact identities. Here we demonstrate our algorithm by computing certificates of impossibilities for an arbitrary sum-of-squares denominator of degree 2 and 4 for some symmetric sextics in 4 and 5 variables, respectively. We can also certify impossibility of base polynomials in the denominator of restricted term structure, for instance as in Landaus reduction by one less variable.

قيم البحث

اقرأ أيضاً

Using Macaulays correspondence we study the family of Artinian Gorenstein local algebras with fixed symmetric Hilbert function decomposition. As an application we give a new lower bound for cactus varieties of the third Veronese embedding. We discuss the case of cubic surfaces, where interesting phenomena occur.
We provide out-of-sample certificates on the controlled invariance property of a given set with respect to a class of black-box linear systems. Specifically, we consider linear time-invariant models whose state space matrices are known only to belong to a certain family due to a possibly inexact quantification of some parameters. By exploiting a set of realizations of those undetermined parameters, verifying the controlled invariance property of the given set amounts to a linear program, whose feasibility allows us to establish an a-posteriori probabilistic certificate on the controlled invariance property of such a set with respect to the nominal linear time-invariant dynamics. The proposed framework is applied to the control of a networked multi-agent system with unknown weighted graph.
The main goal of this paper is to characterize the Hilbert functions of all (artinian) codimension 4 Gorenstein algebras that have at least two independent relations of degree four. This includes all codimension 4 Gorenstein algebras whose initial re lation is of degree at most 3. Our result shows that those Hilbert functions are exactly the so-called {em SI-sequences} starting with (1,4,h_2,h_3,...), where $h_4 leq 33$. In particular, these Hilbert functions are all unimodal. We also establish a more general unimodality result, which relies on the values of the Hilbert function not being too big, but is independent of the initial degree.
Quadratic Unconstrained Binary Optimization (QUBO) is recognized as a unifying framework for modeling a wide range of problems. Problems can be solved with commercial solvers customized for solving QUBO and since QUBO have degree two, it is useful to have a method for transforming higher degree pseudo-Boolean problems to QUBO format. The standard transformation approach requires additional auxiliary variables supported by penalty terms for each higher degree term. This paper improves on the existing cubic-to-quadratic transformation approach by minimizing the number of additional variables as well as penalty coefficient. Extensive experimental testing on Max 3-SAT modeled as QUBO shows a near 100% reduction in the subproblem size used for minimization of the number of auxiliary variables.
Given vertex valencies admissible for a self-dual polyhedral graph, we describe an algorithm to explicitly construct such a polyhedron. Inputting in the algorithm permutations of the degree sequence can give rise to non-isomorphic graphs. As an app lication, we find as a function of $ngeq 3$ the minimal number of vertices for a self-dual polyhedron with at least one vertex of degree $i$ for each $3leq ileq n$, and construct such polyhedra. Moreover, we find a construction for non-self-dual polyhedral graphs of minimal order with at least one vertex of degree $i$ and at least one $i$-gonal face for each $3leq ileq n$.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا