ﻻ يوجد ملخص باللغة العربية
This paper presents a new method for the efficient numerical computation of Casimir interactions between objects of arbitrary geometries, composed of materials with arbitrary frequency-dependent electrical properties. Our method formulates the Casimir effect as an interaction between effective electric and magnetic current distributions on the surfaces of material bodies, and obtains Casimir energies, forces, and torques from the spectral properties of a matrix that quantifies the interactions of these surface currents. The method can be formulated and understood in two distinct ways: textbf{(1)} as a consequence of the familiar textit{stress-tensor} approach to Casimir physics, or, alternatively, textbf{(2)} as a particular case of the textit{path-integral} approach to Casimir physics, and we present both formulations in full detail. In addition to providing an algorithm for computing Casimir interactions in geometries that could not be efficiently handled by any other method, the framework proposed here thus achieves an explicit unification of two seemingly disparate approaches to computational Casimir physics.
We introduce an efficient technique for computing Casimir energies and forces between objects of arbitrarily complex 3D geometries. In contrast to other recently developed methods, our technique easily handles non-spheroidal, non-axisymmetric objects
We extend a recently introduced method for computing Casimir forces between arbitrarily--shaped metallic objects [M. T. H. Reid et al., Phys. Rev. Lett._103_ 040401 (2009)] to allow treatment of objects with arbitrary material properties, including i
In this paper, we study efficient algorithms towards the construction of any arbitrary Dicke state. Our contribution is to use proper symmetric Boolean functions that involve manipulations with Krawtchouk polynomials. Deutsch-Jozsa algorithm, Grover
We study heat radiation and heat transfer for pointlike particles in a system of other objects. Starting from exact many-body expressions found from scattering theory and fluctuational electrodynamics, we find that transfer and radiation for point pa
We study dispersion properties of linear surface gravity waves propagating in an arbitrary direction atop a current profile of depth-varying magnitude using a piecewise linear approximation, and develop a robust numerical framework for practical calc