ﻻ يوجد ملخص باللغة العربية
We study heat radiation and heat transfer for pointlike particles in a system of other objects. Starting from exact many-body expressions found from scattering theory and fluctuational electrodynamics, we find that transfer and radiation for point particles are given in terms of the Greens function of the system in the absence of the point particles. These general expressions contain no approximation for the surrounding objects. As an application, we compute the heat transfer between two point particles in the presence of a sphere of arbitrary size and show that the transfer is enhanced by several orders of magnitude through the presence of the sphere, depending on the materials. Furthermore, we compute the heat emission of a point particle in front of a planar mirror. Finally, we show that a particle placed inside a spherical mirror cavity does not radiate energy.
Near-field heat radiation and transfer are rich in various exciting effects, in particular, regarding the amplification due to the geometrical configuration of the system. In this paper, we study heat exchange in situations where the objects are conf
In d-dimensional lattices of coupled quantum harmonic oscillators, we analyze the heat current caused by two thermal baths of different temperature, which are coupled to opposite ends of the lattice, with focus on the validity of Fouriers law of heat
The low-temperature asymptotic expressions for the Casimir interaction between two real metals described by Leontovich surface impedance are obtained in the framework of thermal quantum field theory. It is shown that the Casimir entropy computed usin
The non-equilibrium state of two oscillators with a mutual interaction and coupled to separate heat baths is discussed. Bosonic baths are considered, and an exact spectral representation for the elements of the covariance matrix is provided analytica
The performances of quantum thermometry in thermal equilibrium together with the output power of certain class of quantum engines share a common characteristic: both are determined by the heat capacity of the probe or working medium. After noticing t