ﻻ يوجد ملخص باللغة العربية
For any odd prime $p$, we prove that the induced homomorphism from the mod $p$ cohomology of the classifying space of a compact simply-connected simple connected Lie group to the Weyl group invariants of the mod $p$ cohomology of the classifying space of its maximal torus is an epimorphism except for the case $p=3$, $G=E_8$.
The $2$-primary homotopy $beta$-family, defined as the collection of Mahowald invariants of Mahowald invariants of $2^i$, $i geq 1$, is an infinite collection of periodic elements in the stable homotopy groups of spheres. In this paper, we calculate
We provide a complete analysis of the motivic Adams spectral sequences converging to the bigraded coefficients of the 2-complete algebraic Johnson-Wilson spectra BPGL<n> over p-adic fields. These spectra interpolate between integral motivic cohomolog
Fix the base field Q of rational numbers and let BP<n> denote the family of motivic truncated Brown-Peterson spectra over Q. We employ a local-to-global philosophy in order to compute the motivic Adams spectral sequence converging to the bi-graded ho
We generalize the Mahowald invariant to the $mathbb{R}$-motivic and $C_2$-equivariant settings. For all $i>0$ with $i equiv 2,3 mod 4$, we show that the $mathbb{R}$-motivic Mahowald invariant of $(2+rho eta)^i in pi_{0,0}^{mathbb{R}}(S^{0,0})$ contai
This paper explores the relation between the structure of fibre bundles akin to those associated to a closed almost nonnegatively sectionally curved manifold and rational homotopy theory.