ﻻ يوجد ملخص باللغة العربية
The $2$-primary homotopy $beta$-family, defined as the collection of Mahowald invariants of Mahowald invariants of $2^i$, $i geq 1$, is an infinite collection of periodic elements in the stable homotopy groups of spheres. In this paper, we calculate $mathit{tmf}$-based approximations to this family. Our calculations combine an analysis of the Atiyah-Hirzebruch spectral sequence for the Tate construction of $mathit{tmf}$ with trivial $C_2$-action and Behrens filtered Mahowald invariant machinery.
We generalize the Mahowald invariant to the $mathbb{R}$-motivic and $C_2$-equivariant settings. For all $i>0$ with $i equiv 2,3 mod 4$, we show that the $mathbb{R}$-motivic Mahowald invariant of $(2+rho eta)^i in pi_{0,0}^{mathbb{R}}(S^{0,0})$ contai
The motivic Mahowald invariant was introduced in cite{Qui19a} and cite{Qui19b} to study periodicity in the $mathbb{C}$- and $mathbb{R}$-motivic stable stems. In this paper, we define the motivic Mahowald invariant over any field $F$ of characteristic
We explore an approach to twisted generalized cohomology from the point of view of stable homotopy theory and quasicategory theory provided by arXiv:0810.4535. We explain the relationship to the twisted K-theory provided by Fredholm bundles. We show
We determine the image of the 2-primary tmf-Hurewicz homomorphism, where tmf is the spectrum of topological modular forms. We do this by lifting elements of tmf_* to the homotopy groups of the generalized Moore spectrum M(8,v_1^8) using a modified fo
This paper contains a complete computation of the homotopy ring of the spectrum of topological modular forms constructed by Hopkins and Miller. The computation is done away from 6, and at the (interesting) primes 2 and 3 separately, and in each of th