ترغب بنشر مسار تعليمي؟ اضغط هنا

How many interchanges does the selection sort make for iid geometric(p) input?

35   0   0.0 ( 0 )
 نشر من قبل Olivia Saierli
 تاريخ النشر 2012
  مجال البحث الاحصاء الرياضي
والبحث باللغة English




اسأل ChatGPT حول البحث

The note derives an expression for the number of interchanges made by selection sort when the sorting elements are iid variates from geometric distribution. Empirical results reveal we can work with a simpler model compared to what is suggestive in theory. The morale is that statistical analysis of an algorithms complexity has something to offer in its own right and should be therefore ventured not with a predetermined mindset to verify what we already know in theory. Herein also lies the concept of an empirical O, a novel although subjective bound estimate over a finite input range obtained by running computer experiments. For an arbitrary algorithm, where theoretical results could be tedious, this could be of greater use.

قيم البحث

اقرأ أيضاً

There is a longstanding discrepancy between the observed Galactic classical nova rate of $sim 10$ yr$^{-1}$ and the predicted rate from Galactic models of $sim 30$--50 yr$^{-1}$. One explanation for this discrepancy is that many novae are hidden by i nterstellar extinction, but the degree to which dust can obscure novae is poorly constrained. We use newly available all-sky three-dimensional dust maps to compare the brightness and spatial distribution of known novae to that predicted from relatively simple models in which novae trace Galactic stellar mass. We find that only half ($sim 48$%) of novae are expected to be easily detectable ($g lesssim 15$) with current all-sky optical surveys such as the All-Sky Automated Survey for Supernovae (ASAS-SN). This fraction is much lower than previously estimated, showing that dust does substantially affect nova detection in the optical. By comparing complementary survey results from ASAS-SN, OGLE-IV, and the Palomar Gattini IR-survey in the context of our modeling, we find a tentative Galactic nova rate of $sim 40$ yr$^{-1}$, though this could decrease to as low as $sim 30$ yr$^{-1}$ depending on the assumed distribution of novae within the Galaxy. These preliminary estimates will be improved in future work through more sophisticated modeling of nova detection in ASAS-SN and other surveys.
We consider the effect of introducing a small number of non-aligning agents in a well-formed flock. To this end, we modify a minimal model of active Brownian particles with purely repulsive (excluded volume) forces to introduce an alignment interacti on that will be experienced by all the particles except for a small minority of dissenters. We find that even a very small fraction of dissenters disrupts the flocking state. Strikingly, these motile dissenters are much more effective than an equal number of static obstacles in breaking up the flock. For the studied system sizes we obtain clear evidence of scale invariance at the flocking-disorder transition point and the system can be effectively described with a finite-size scaling formalism. We develop a continuum model for the system which reveals that dissenters act like annealed noise on aligners, with a noise strength that grows with the persistence of the dissenters dynamics.
This is a story about making quantum computers speak, and doing so in a quantum-native, compositional and meaning-aware manner. Recently we did question-answering with an actual quantum computer. We explain what we did, stress that this was all done in terms of pictures, and provide many pointers to the related literature. In fact, besides natural language, many other things can be implemented in a quantum-native, compositional and meaning-aware manner, and we provide the reader with some indications of that broader pictorial landscape, including our account on the notion of compositionality. We also provide some guidance for the actual execution, so that the reader can give it a go as well.
A $D$-dimensional Markovian open quantum system will undergo quantum jumps between pure states, if we can monitor the bath to which it is coupled with sufficient precision. In general these jumps, plus the between-jump evolution, create a trajectory which passes through infinitely many different pure states. Here we show that, for any ergodic master equation, one can expect to find an {em adaptive} monitoring scheme on the bath that can confine the system state to jumping between only $K$ states, for some $K geq (D-1)^2+1$. For $D=2$ we explicitly construct a 2-state ensemble for any ergodic master equation, showing that one bit is always sufficient to track a qubit.
40 - M. Svanda 2008
The motions of the plasma and structures in and below the solar photosphere is not well understood. The results obtained using various methods cannot be in general considered as consistent, especially in details. In this contribution we show a summar y of the results obtained by the method we have developed recently. To study the photospheric dynamics we apply the local correlation tracking algorithm to the series of full-disc Dopplergrams obtained by Michelson Doppler Imager (MDI) aboard the SOHO satelite. The dominant structure recorded in Dopplergrams is the supergranulation. Under the assumtion that the supergranules are carried by the flow field of the larger scale, we study properties of this underlying velocity field. We perform comparative tests with synthetic data with known properties and with results of the time-distance helioseismology with a great success. A few case studies are shown to demonstrate the performance of the method. We believe that tracking of supergranules makes a perfect sense when studying the large-scale flows in the solar photosphere. The method we demonstrate is suitable to detect large-scale velocity field with effective resolution of 60 and random error of 15 m/s. We believe that our method may provide a powerful tool for studies related to the dynamic behaviour of plasmas in the solar photosphere.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا