ترغب بنشر مسار تعليمي؟ اضغط هنا

Galactic Extinction: How Many Novae Does it Hide and How Does it Affect the Galactic Nova Rate?

161   0   0.0 ( 0 )
 نشر من قبل Adam Kawash
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

There is a longstanding discrepancy between the observed Galactic classical nova rate of $sim 10$ yr$^{-1}$ and the predicted rate from Galactic models of $sim 30$--50 yr$^{-1}$. One explanation for this discrepancy is that many novae are hidden by interstellar extinction, but the degree to which dust can obscure novae is poorly constrained. We use newly available all-sky three-dimensional dust maps to compare the brightness and spatial distribution of known novae to that predicted from relatively simple models in which novae trace Galactic stellar mass. We find that only half ($sim 48$%) of novae are expected to be easily detectable ($g lesssim 15$) with current all-sky optical surveys such as the All-Sky Automated Survey for Supernovae (ASAS-SN). This fraction is much lower than previously estimated, showing that dust does substantially affect nova detection in the optical. By comparing complementary survey results from ASAS-SN, OGLE-IV, and the Palomar Gattini IR-survey in the context of our modeling, we find a tentative Galactic nova rate of $sim 40$ yr$^{-1}$, though this could decrease to as low as $sim 30$ yr$^{-1}$ depending on the assumed distribution of novae within the Galaxy. These preliminary estimates will be improved in future work through more sophisticated modeling of nova detection in ASAS-SN and other surveys.

قيم البحث

اقرأ أيضاً

A standard prediction of galaxy formation theory is that the ionizing background suppresses galaxy formation in haloes with peak circular velocities smaller than Vpeak ~ 20 km/s, rendering the majority of haloes below this scale completely dark. We u se a suite of cosmological zoom simulations of Milky Way-like haloes that include central Milky Way disk galaxy potentials to investigate the relationship between subhaloes and ultrafaint galaxies. We find that there are far too few subhaloes within 50 kpc of the Milky Way that had Vpeak > 20 km/s to account for the number of ultrafaint galaxies already known within that volume today. In order to match the observed count, we must populate subhaloes down to Vpeak ~ 6 km/s with ultrafaint dwarfs. The required haloes have peak virial temperatures as low as 1,500 K, well below the atomic hydrogen cooling limit of 10^4 K. Allowing for the possibility that the Large Magellanic Cloud contributes several of the satellites within 50 kpc could potentially raise this threshold to 10 km/s (4,000 K), still below the atomic cooling limit and far below the nominal reionization threshold.
We consider the effect of introducing a small number of non-aligning agents in a well-formed flock. To this end, we modify a minimal model of active Brownian particles with purely repulsive (excluded volume) forces to introduce an alignment interacti on that will be experienced by all the particles except for a small minority of dissenters. We find that even a very small fraction of dissenters disrupts the flocking state. Strikingly, these motile dissenters are much more effective than an equal number of static obstacles in breaking up the flock. For the studied system sizes we obtain clear evidence of scale invariance at the flocking-disorder transition point and the system can be effectively described with a finite-size scaling formalism. We develop a continuum model for the system which reveals that dissenters act like annealed noise on aligners, with a noise strength that grows with the persistence of the dissenters dynamics.
We present the first numerical simulations that self-consistently follow the formation of dense molecular clouds in colliding flows. Our calculations include a time-dependent model for the H2 and CO chemistry that runs alongside a detailed treatment of the dominant heating and cooling processes in the ISM. We adopt initial conditions characteristic of the warm neutral medium and study two different flow velocities - a slow flow with v = 6.8 km/s and a fast flow with v = 13.6 km/s. The clouds formed by the collision of these flows form stars, with star formation beginning after 16 Myr in the case of the slower flow, but after only 4.4 Myr in the case of the faster flow. In both flows, the formation of CO-dominated regions occurs only around 2 Myr before the onset of star formation. Prior to this, the clouds produce very little emission in the J = 1 -> 0 transition line of CO, and would probably not be identified as molecular clouds in observational surveys. In contrast, our models show that H2-dominated regions can form much earlier, with the timing depending on the details of the flow. In the case of the slow flow, small pockets of gas become fully molecular around 10 Myr before star formation begins, while in the fast flow, the first H2-dominated regions occur around 3 Myr before the first prestellar cores form. Our results are consistent with models of molecular cloud formation in which the clouds are dominated by dark molecular gas for a considerable proportion of their assembly history.
In order to stabilize the behavior of noisy systems, confining it around a desirable state, an effort is required to suppress the intrinsic noise. This noise suppression task entails a cost. For the important case of thermal noise in an overdamped sy stem, we show that the minimum cost is achieved when the system control parameters are held constant: any additional deterministic or random modulation produces an increase of the cost. We discuss the implications of this phenomenon for those overdamped systems whose control parameters are intrinsically noisy, presenting a case study based on the example of a Brownian particle optically trapped in an oscillating potential.
Nanophotonic chiral sensing has recently attracted a lot of attention. The idea is to exploit the strong light-matter interaction in nanophotonic resonators to determine the concentration of chiral molecules at ultra-low thresholds, which is highly a ttractive for numerous applications in life science and chemistry. However, a thorough understanding of the underlying interactions is still missing. The theoretical description relies on either simple approximations or on purely numerical approaches. We close this gap and present a general theory of chiral light-matter interactions in arbitrary resonators. Our theory describes the chiral interaction as a perturbation of the resonator modes, also known as resonant states or quasi-normal modes. We observe two dominant contributions: A chirality-induced resonance shift and changes in the modes excitation and emission efficiencies. Our theory brings new and deep insights for tailoring and enhancing chiral light-matter interactions. Furthermore, it allows to predict spectra much more efficiently in comparison to conventional approaches. This is particularly true as chiral interactions are inherently weak and therefore perturbation theory fits extremely well for this problem.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا