ﻻ يوجد ملخص باللغة العربية
We discuss in a critical way the physical foundations of geometric structure of relativistic theories of gravity by the so-called Ehlers-Pirani-Schild formalism. This approach provides a natural interpretation of the observables showing how relate them to General Relativity and to a large class of Extended Theories of Gravity. In particular we show that, in such a formalism, geodesic and causal structures of space-time can be safely disentangled allowing a correct analysis in view of observations and experiment. As specific case, we take into account the case of f(R) gravity.
C-theory provides a unified framework to study metric, metric-affine and more general theories of gravity. In the vacuum weak-field limit of these theories, the parameterized post-Newtonian (PPN) parameters $beta$ and $gamma$ can differ from their ge
Static and spherically symmetric wormhole solutions can be reconstructed in the framework of curvature based Extended Theories of Gravity. In particular, extensions of the General Relativity, in metric and curvature formalism give rise to modified gr
We study the frequency shift of photons generated by rotating gravitational sources in the framework of curvature based Extended Theories of Gravity. The discussion is developed considering the weak-field approximation. Following a perturbative appro
Thanks to the Planck Collaboration, we know the value of the scalar spectral index of primordial fluctuations with unprecedented precision. In addition, the joint analysis of the data from Planck, BICEP2, and KEK has further constrained the value of
In the bibliography a certain confusion arises in what regards to the classification of the gravitational theories into scalar-tensor theories and general relativity with a scalar field either minimally or non-minimally coupled to matter. Higher-deri