ترغب بنشر مسار تعليمي؟ اضغط هنا

Higgs Branching Fraction Study in ILC

123   0   0.0 ( 0 )
 نشر من قبل Hiroaki Ono
 تاريخ النشر 2012
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

Precise measurement of the Higgs boson properties are important issues for the International Linear Collider (ILC) project to understand the particles mass generation mechanism which strongly related to the coupling with the Higgs boson. Large Hadron Collider (LHC) experiments exclude the large area of the predicted Higgs mass region and their results indicate that Higgs boson mass will be light. Even if LHC discovers the Higgs like particle by the end of 2012, Higgs will be identified by the high precision measurement of the Higgs boson properties in ILC and also Higgs measurement verifies the correctness of standard model (SM) or gives some hints toward its beyond. In this study, we evaluate the measurement accuracies of Higgs branching fraction to the H->bb, cc and gg at the center-of-mass energy of 250 and 350 GeV.



قيم البحث

اقرأ أيضاً

78 - Hiroaki Ono 2009
Precise measurement of the Higgs boson properties is an important issue of the International Linear Collider (ILC) experiment. We studied the accuracy of the Higgs mass reconstruction in the ZH->qqH multi-jet process with the Higgs mass of MH = 120 G eV at sqrt(s) = 250 GeV with the ILD detector model. In this study, we obtained the reconstructed Higgs mass of M_H = 120.79 +- 0.089 GeV and 5.3% measurement accuracy of the cross-section for ZH->qqbb with the integrated luminosity of L=250 fb^{-1} data samples.
We evaluate the expected measurement accuracy of the branching ratio of the Standard Model Higgs boson decaying into tau lepton pairs $h to tau ^+ tau ^-$ at the ILC with a center-of-mass energy of $sqrt{s} = 500$ GeV with a full simulation of the IL D detector. We assume a Higgs mass of $M_h = 125$ GeV, a branching ratio of $mathrm{BR}(h to tau ^+ tau ^-) = 6.32 %$, beam polarizations of $P(e^+, e^-) = (-0.8,+0.3)$, and an integrated luminosity of $int L dt = 500 mathrm{fb^{-1}}$. The Higgs-strahlung process $e^+ e^- to Zh$ with $Z to q overline{q}$ and the $WW$-fusion process $e^+ e^- to u overline{ u} h$ are expected to be the most sensitive channels at $sqrt{s} = 500$ GeV. Using a multivariate analysis technique, we estimate the expected relative measurement accuracy of the branching ratio $Delta(sigma cdot mathrm{BR}) / (sigma cdot mathrm{BR})$ to be 4.7% and 7.4% for the $q overline{q} h$ and $ u overline{ u} h$ final states, respectively. The results are cross-checked using a cut-based analysis.
The prospects for measuring the branching fraction of $H to mu ^+ mu ^-$ at the International Linear Collider (ILC) have been evaluated based on a full detector simulation of the International Large Detector (ILD) concept, considering centre-of-mass energies ($sqrt{s}$) of 250 GeV and 500 GeV. For both $sqrt{s}$ cases, the two final states $e^+ e^- to qoverline{q}H$ and $e^+ e^- to u overline{ u}H$ have been analyzed. For integrated luminosities of 2 ab$^{-1}$ at $sqrt{s} = 250$ GeV and 4 ab$^{-1}$ at $sqrt{s} = 500$ GeV, the combined precision on the branching fraction of $H to mu ^+ mu ^-$ is estimated to be 17{%}. The impact of the transverse momentum resolution for this analysis is also studied.
We study the prospects of measurement of the branching ratio of $h to mu ^+ mu ^-$ at the International Linear Collider (ILC). The study is performed at center-of-mass energies of 250 GeV and 500 GeV, using fully-simulated MC samples with the Interna tional Large Detector (ILD) model. For both center-of-mass energies, the two final states $qoverline{q}h$ and $ u overline{ u}h$ have been analyzed. For an integrated luminosity of 2000 fb$^{-1}$ at 250 GeV and 4000 fb$^{-1}$ at 500 GeV, corresponding to the H20 running scenario as well as its staged version, the precision on $sigma times mathrm{BR}(h to mu ^+ mu ^-)$ is estimated.
122 - Y. Banda 2009
We present an analysis for the measurement of the Higgs boson branching ratio H-> cc-bar for a light Standard Model-like Higgs boson produced at 250 GeV centre of mass energy at the International Linear Collider (ILC). The tools and technique used fo r the analysis are described and relative uncertainties are determined.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا