ترغب بنشر مسار تعليمي؟ اضغط هنا

Radiation Damping in the Photoionization of Fe^{14+}

36   0   0.0 ( 0 )
 نشر من قبل Muhammet Hasoglu Dr.
 تاريخ النشر 2012
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

A theoretical investigation of photoabsorption and photoionization of Fe^{14+} extending beyond an earlier frame transformation R-matrix implementation is performed using a fully-correlated, Breit-Pauli R-matrix formulation including both fine-structure splitting of strongly-bound resonances and radiation damping. The radiation damping of $2prightarrow nd$ resonances gives rise to a resonant photoionization cross section that is significantly lower than the total photoabsorption cross section. Furthermore, the radiation-damped photoionization cross section is found to be in good agreement with recent experimental results once a global shift in energy of $approx -3.5$ eV is applied. These findings have important implications. Firstly, the presently available synchrotron experimental data are applicable only to photoionization processes and not to photoabsorption; the latter is required in opacity calculations. Secondly, our computed cross section, for which the L-shell ionization threshold is aligned with the NIST value, shows a series of $2p rightarrow nd$ Rydberg resonances that are uniformly 3-4 eV higher in energy than the corresponding experimental profiles, indicating that the L-shell threshold energy values currently recommended by NIST are likely in error.

قيم البحث

اقرأ أيضاً

71 - Sultana N. Nahar 2018
The IRON Project, initiated in 1991, aims at two main objectives, i) study the characteristics of and calculate large-scale high accuracy data for atomic radiative and collisional processes, and ii) application in solving astrophysical problems. It f ocuses on the complex iron and iron-peak elements commonly observed in the spectra of astrophysical plasmas. The present report will illustrate the characteristics of the dominant atomic process of photoionization that have been established under the project and the preceding the Opacity Project and their importance in applications.
The photon-ion merged-beams technique for the photoionization of mass/charge selected ionized atoms, molecules and clusters by x-rays from synchrotron radiation sources is introduced. Examples for photoionization of atomic ions are discussed by going from outer-shell ionization of simple few-electron systems to inner-shell ionization of complex many-electron ions. Fundamental ionization mechanisms are elucidated and the importance of the results for applications in astrophysics and plasma physics is pointed out. Finally, the unique capabilities of the photon-ion merged-beams technique for the study of photoabsorption by nanoparticles are demonstrated by the example of endohedral fullerene ions.
Recent R-matrix calculations claim to produce a significant enhancement in the opacity of Fe XVII due to atomic core excitations [S. N. Nahar & A.K. Pradhan, Phys. Rev. Letters 116, 235003 (2016), arXiv:1606.02731] and assert that this enhancement is consistent with recent measurements of higher-than-predicted iron opacities [J. E. Bailey et al., Nature 517, 56 (2015)]. This comment shows that the standard opacity models which have already been directly compared with experimental data produce photon absorption cross-sections for Fe XVII that are effectively equivalent to (and in fact larger than) the new R-matrix opacities. Thus, the new R-matrix results cannot be expected to significantly impact the existing discrepancies between theory and experiment because they produce neither a large enhancement nor account for missing continuum plasma opacity relative to standard models.
Ultrafast processes in matter, such as the electron emission following light absorption, can now be studied using ultrashort light pulses of attosecond duration ($10^{-18}$s) in the extreme ultraviolet spectral range. The lack of spectral resolution due to the use of short light pulses may raise serious issues in the interpretation of the experimental results and the comparison with detailed theoretical calculations. Here, we determine photoionization time delays in neon atoms over a 40 eV energy range with an interferometric technique combining high temporal and spectral resolution. We spectrally disentangle direct ionization from ionization with shake up, where a second electron is left in an excited state, thus obtaining excellent agreement with theoretical calculations and thereby solving a puzzle raised by seven-year-old measurements. Our experimental approach does not have conceptual limits, allowing us to foresee, with the help of upcoming laser technology, ultra-high resolution time-frequency studies from the visible to the x-ray range.
We report measurements of energy-dependent attosecond photoionization delays between the two outer-most valence shells of N$_2$O and H$_2$O. The combination of single-shot signal referencing with the use of different metal foils to filter the attosec ond pulse train enables us to extract delays from congested spectra. Remarkably large delays up to 160 as are observed in N$_2$O, whereas the delays in H$_2$O are all smaller than 50 as in the photon-energy range of 20-40 eV. These results are interpreted by developing a theory of molecular photoionization delays. The long delays measured in N$_2$O are shown to reflect the population of molecular shape resonances that trap the photoelectron for a duration of up to $sim$110 as. The unstructured continua of H$_2$O result in much smaller delays at the same photon energies. Our experimental and theoretical methods make the study of molecular attosecond photoionization dynamics accessible.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا