ﻻ يوجد ملخص باللغة العربية
The photon-ion merged-beams technique for the photoionization of mass/charge selected ionized atoms, molecules and clusters by x-rays from synchrotron radiation sources is introduced. Examples for photoionization of atomic ions are discussed by going from outer-shell ionization of simple few-electron systems to inner-shell ionization of complex many-electron ions. Fundamental ionization mechanisms are elucidated and the importance of the results for applications in astrophysics and plasma physics is pointed out. Finally, the unique capabilities of the photon-ion merged-beams technique for the study of photoabsorption by nanoparticles are demonstrated by the example of endohedral fullerene ions.
The IRON Project, initiated in 1991, aims at two main objectives, i) study the characteristics of and calculate large-scale high accuracy data for atomic radiative and collisional processes, and ii) application in solving astrophysical problems. It f
We review recent work on the photoionization of atomic ions of astrophysical interest that has been carried out at the photon-ion merged-beams setup PIPE, a permanently installed end station at the XUV beamline P04 of the PETRAIII synchrotron radiati
Isolating neutral and charged particles from the environment is essential in precision experiments. For decades, this has been achieved by trapping ions with radio-frequency (rf) fields and neutral particles with optical fields. Recently, trapping of
Recent progresses on quantum control of cold atoms and trapped ions in both the scientific and technological aspects greatly advance the applications in precision measurement. Thanks to the exceptional controllability and versatility of these massive
Relative cross sections for $m$-fold photoionization ($m=1,ldots,5$) of Fe$^{3+}$ by single photon absorption were measured employing the photon-ion merged-beams setup PIPE at the PETRA III synchrotron light source operated at DESY in Hamburg, German