ﻻ يوجد ملخص باللغة العربية
Chemical purity of RNA samples is critical for high-precision studies of RNA folding and catalytic behavior, but such purity may be compromised by photodamage accrued during ultraviolet (UV) visualization of gel-purified samples. Here, we quantitatively assess the breadth and extent of such damage by using reverse transcription followed by single-nucleotide-resolution capillary electrophoresis. We detected UV-induced lesions across a dozen natural and artificial RNAs including riboswitch domains, other non-coding RNAs, and artificial sequences; across multiple sequence contexts, dominantly at but not limited to pyrimidine doublets; and from multiple lamps that are recommended for UV shadowing in the literature. Most strikingly, irradiation time-courses reveal detectable damage within a few seconds of exposure, and these data can be quantitatively fit to a skin effect model that accounts for the increased exposure of molecules near the top of irradiated gel slices. The results indicate that 200-nucleotide RNAs subjected to 20 seconds or less of UV shadowing can incur damage to 20% of molecules, and the molecule-by-molecule distribution of these lesions is more heterogeneous than a Poisson distribution. Photodamage from UV shadowing is thus likely a widespread but unappreciated cause of artifactual heterogeneity in quantitative and single-molecule-resolution RNA biophysical measurements.
The tertiary structures of functional RNA molecules remain difficult to decipher. A new generation of automated RNA structure prediction methods may help address these challenges but have not yet been experimentally validated. Here we apply four pred
Chemical mapping methods probe RNA structure by revealing and leveraging correlations of a nucleotides structural accessibility or flexibility with its reactivity to various chemical probes. Pioneering work by Lucks and colleagues has expanded this m
In this paper we enumerate $k$-noncrossing RNA pseudoknot structures with given minimum stack-length. We show that the numbers of $k$-noncrossing structures without isolated base pairs are significantly smaller than the number of all $k$-noncrossing
Ribonucleic acid (RNA) is involved in many regulatory and catalytic processes in the cell. The function of any RNA molecule is intimately related with its structure. In-line probing experiments provide valuable structural datasets for a variety of RN
We study genetic networks that produce many species of non-coding RNA molecules that are present at a moderate density, as typically exists in the cell. The associations of the many species of these RNA are modeled physically, taking into account the