ترغب بنشر مسار تعليمي؟ اضغط هنا

Collective regulation by non-coding RNA

228   0   0.0 ( 0 )
 نشر من قبل Joshua M. Deutsch
 تاريخ النشر 2014
  مجال البحث علم الأحياء
والبحث باللغة English
 تأليف J. M. Deutsch




اسأل ChatGPT حول البحث

We study genetic networks that produce many species of non-coding RNA molecules that are present at a moderate density, as typically exists in the cell. The associations of the many species of these RNA are modeled physically, taking into account the equilibrium constants between bound and unbound states. By including the pair-wise binding of the many RNA species, the network becomes highly interconnected and shows different properties than the usual type of genetic network. It shows much more robustness to mutation, and also rapid evolutionary adaptation in an environment that oscillates in time. This provides a possible explanation for the weak evolutionary constraints seen in much of the non-coding RNA that has been studied.


قيم البحث

اقرأ أيضاً

82 - J. M. Deutsch 2016
The majority of mammalian genomic transcripts do not directly code for proteins and it is currently believed that most of these are not under evolutionary constraint. However given the abundance non-coding RNA (ncRNA) and its strong affinity for inte r-RNA binding, these molecules have the potential to regulate proteins in a highly distributed way, similar to artificial neural networks. We explore this analogy by devising a simple architecture for a biochemical network that can function as an associative memory. We show that the steady state solution for this chemical network has the same structure as an associative memory neural network model. By allowing the choice of equilibrium constants between different ncRNA species, the concentration of unbound ncRNA can be made to follow any pattern and many patterns can be stored simultaneously. The model is studied numerically and within certain parameter regimes it functions as predicted. Even if the starting concentration pattern is quite different, it is shown to converge to the original pattern most of the time. The network is also robust to mutations in equilibrium constants. This calls into question the criteria for deciding if a sequence is under evolutionary constraint.
Mutation is a critical mechanism by which evolution explores the functional landscape of proteins. Despite our ability to experimentally inflict mutations at will, it remains difficult to link sequence-level perturbations to systems-level responses. Here, we present a framework centered on measuring changes in the free energy of the system to link individual mutations in an allosteric transcriptional repressor to the parameters which govern its response. We find the energetic effects of the mutations can be categorized into several classes which have characteristic curves as a function of the inducer concentration. We experimentally test these diagnostic predictions using the well-characterized LacI repressor of Escherichia coli, probing several mutations in the DNA binding and inducer binding domains. We find that the change in gene expression due to a point mutation can be captured by modifying only a subset of the model parameters that describe the respective domain of the wild-type protein. These parameters appear to be insulated, with mutations in the DNA binding domain altering only the DNA affinity and those in the inducer binding domain altering only the allosteric parameters. Changing these subsets of parameters tunes the free energy of the system in a way that is concordant with theoretical expectations. Finally, we show that the induction profiles and resulting free energies associated with pairwise double mutants can be predicted with quantitative accuracy given knowledge of the single mutants, providing an avenue for identifying and quantifying epistatic interactions.
93 - J. M. Deutsch 2018
The evolution of the genome has led to very sophisticated and complex regulation. Because of the abundance of non-coding RNA (ncRNA) in the cell, different species will promiscuously associate with each other, suggesting collective dynamics similar t o artificial neural networks. Here we present a simple mechanism allowing ncRNA to perform computations equivalent to neural network algorithms such as Boltzmann machines and the Hopfield model. The quantities analogous to the neural couplings are the equilibrium constants between different RNA species. The relatively rapid equilibration of RNA binding and unbinding is regulated by a slower process that degrades and creates new RNA. The model requires that the creation rate for each species be an increasing function of the ratio of total to unbound RNA. Similar mechanisms have already been found to exist experimentally for ncRNA regulation. With the overall concentration of RNA regulated, equilibrium constants can be chosen to store many different patterns, or many different input-output relations. The network is also quite insensitive to random mutations in equilibrium constants. Therefore one expects that this kind of mechanism will have a much higher mutation rate than ones typically regarded as being under evolutionary constraint.
159 - J. M. Deutsch 2021
Does regulation in the genome use collective behavior, similar to the way the brain or deep neural networks operate? Here I make the case for why having a genomic network capable of a high level of computation would be strongly selected for, and sugg est how it might arise from biochemical processes that succeed in regulating in a collective manner, very different than the usual way we think about genetic regulation.
Rule-based modeling is a powerful way to model kinetic interactions in biochemical systems. Rules enable a precise encoding of biochemical interactions at the resolution of sites within molecules, but obtaining an integrated global view from sets of rules remains challenging. Current automated approaches to rule visualization fail to address the complexity of interactions between rules, limiting either the types of rules that are allowed or the set of interactions that can be visualized simultaneously. There is a need for scalable visualization approaches that present the information encoded in rules in an intuitive and useful manner at different levels of detail. We have developed new automated approaches for visualizing both individual rules and complete rule-based models. We find that a more compact representation of an individual rule promotes promotes understanding the model assumptions underlying each rule. For global visualization of rule interactions, we have developed a method to synthesize a network of interactions between sites and processes from a rule-based model and then use a combination of user-defined and automated approaches to compress this network into a readable form. The resulting diagrams enable modelers to identify signaling motifs such as cascades, feedback loops, and feed-forward loops in complex models, as we demonstrate using several large-scale models. These capabilities are implemented within the BioNetGen framework but the approach is equally applicable to rule-based models specified in other formats.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا