ترغب بنشر مسار تعليمي؟ اضغط هنا

Magnetically driven superconductivity in CeCu2Si2

46   0   0.0 ( 0 )
 نشر من قبل Stefan Kirchner
 تاريخ النشر 2012
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The origin of unconventional superconductivity, including high-temperature and heavy-fermion superconductivity, is still a matter of controversy. Spin excitations instead of phonons are thought to be responsible for the formation of Cooper pairs. Using inelastic neutron scattering, we present the first in-depth study of the magnetic excitation spectrum in momentum and energy space in the superconducting and the normal states of CeCu2Si2. A clear spin excitation gap is observed in the superconducting state. We determine a lowering of the magnetic exchange energy in the superconducting state, in an amount considerably larger than the superconducting condensation energy. Our findings identify the antiferromagnetic excitations as the major driving force for superconducting pairing in this prototypical heavy-fermion compound located near an antiferromagnetic quantum critical point.

قيم البحث

اقرأ أيضاً

Superconductivity in the heavy-fermion compound CeCu2Si2 is a prototypical example of Cooper pairs formed by strongly correlated electrons. For more than 30 years, it has been believed to arise from nodal d-wave pairing mediated by a magnetic glue. H ere, we report a detailed study of the specific heat and magnetization at low temperatures for a high-quality single crystal. Unexpectedly, the specific-heat measurements exhibit exponential decay with a two-gap feature in its temperature dependence, along with a linear dependence as a function of magnetic field and the absence of oscillations in the field angle, reminiscent of multiband full-gap superconductivity. In addition, we find anomalous behavior at high fields, attributed to a strong Pauli paramagnetic effect. A low quasiparticle density of states at low energies with a multiband Fermi-surface topology would open a new door into electron pairing in CeCu2Si2.
A key aspect of unconventional pairing by the antiferromagnetic spin-fluctuation mechanism is that the superconducting energy gap must have opposite sign on different parts of the Fermi surface. Recent observations of non-nodal gap structure in the h eavy-fermion superconductor CeCu$_2$Si$_2$ were then very surprising, given that this material has long been considered a prototypical example of a superconductor where the Cooper pairing is magnetically mediated. Here we present a study of the effect of controlled point defects, introduced by electron irradiation, on the temperature-dependent magnetic penetration depth $lambda(T)$ in CeCu$_2$Si$_2$. We find that the fully-gapped state is robust against disorder, demonstrating that low-energy bound states, expected for sign-changing gap structures, are not induced by nonmagnetic impurities. This provides bulk evidence for $s_{++}$-wave superconductivity without sign reversal.
In exotic superconductors including high-$T_c$ copper-oxides, the interactions mediating electron Cooper-pairing are widely considered to have a magnetic rather than the conventional electron-phonon origin. Interest in such exotic pairing was initiat ed by the 1979 discovery of heavy-fermion superconductivity in CeCu$_2$Si$_2$, which exhibits strong antiferromagnetic fluctuations. A hallmark of unconventional pairing by anisotropic repulsive interactions is that the superconducting energy gap changes sign as a function of the electron momentum, often leading to nodes where the gap goes to zero. Here, we report low-temperature specific heat, thermal conductivity and magnetic penetration depth measurements in CeCu$_2$Si$_2$, demonstrating the absence of gap nodes at any point on the Fermi surface. Moreover, electron-irradiation experiments reveal that the superconductivity survives even when the electron mean free path becomes substantially shorter than the superconducting coherence length. This indicates that superconductivity is robust against impurities, implying that there is no sign change in the gap function. These results show that, contrary to long-standing belief, heavy electrons with extremely strong Coulomb repulsions can condense into a fully-gapped s-wave superconducting state, which has an on-site attractive pairing interaction.
111 - Jia Yu , Congcong Le , Zhiwei Li 2021
Materials with exceptional magnetism and superconductivity usually conceive emergent physical phenomena. Here, we investigate the physical properties of the (Eu,La)FeAs2 system with double magnetic sublattices. The parent EuFeAs2 shows anisotropy-ass ociated magnetic behaviors, such as Eu-related moment canting and exchange bias. Through La doping, the magnetic anisotropy is enhanced with ferromagnetism of Eu2+ realized in the overdoped region, and a special exchange bias of the superposed ferromagnetic/superconducting loop revealed in Eu0.8La0.2FeAs2. Meanwhile, the Fe-related antiferromagnetism shows unusual robustness against La doping. Theoretical calculation and 57Fe Mossbauer spectroscopy investigation reveal a doping-tunable dual itinerant/localized nature of the Fe-related antiferromagnetism. Coexistence of the Eu-related ferromagnetism, Fe-related robust antiferromagnetism, and superconductivity is further revealed in Eu0.8La0.2FeAs2, providing a platform for further exploration of potential applications and emergent physics. Finally, an electronic phase diagram is established for (Eu,La)FeAs2 with the whole superconducting dome adjacent to the Fe-related antiferromagnetic phase, which is of benefit for seeking underlying clues to high-temperature superconductivity.
A theory of superconductivity in the iron-based materials requires an understanding of the phase diagram of the normal state. In these compounds, superconductivity emerges when stripe spin density wave (SDW) order is suppressed by doping, pressure or atomic disorder. This magnetic order is often pre-empted by nematic order, whose origin is yet to be resolved. One scenario is that nematic order is driven by orbital ordering of the iron 3d-electrons that triggers stripe SDW order. Another is that magnetic interactions produce a spin-nematic phase, which then induces orbital order. In this article, we report the observation by neutron powder diffraction of an additional four- fold-symmetric phase in Ba1-xNaxFe2As2 close to the suppression of SDW order, which is consistent with the predictions of magnetically-driven models of nematic order.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا