Evidence for the ground state of the neutron-unbound nucleus 26O was observed for the first time in the single proton-knockout reaction from a 82 MeV/u 27F beam. Neutrons were measured in coincidence with 24O fragments. 26O was determined to be unbound by 150+50-150 keV from the observation of low-energy neutrons. This result agrees with recent shell model calculations based on microscopic two- and three-nucleon forces.
Background: Theoretical calculations have shown that the energy and angular correlations in the three-body decay of the two-neutron unbound O26 can provide information on the ground-state wave function, which has been predicted to have a dineutron co
nfiguration and 2n halo structure. Purpose: To use the experimentally measured three-body correlations to gain insight into the properties of O26, including the decay mechanism and ground-state resonance energy. Method: O26 was produced in a one-proton knockout reaction from F27 and the O24+n+n decay products were measured using the MoNA-Sweeper setup. The three-body correlations from the O26 ground-state resonance decay were extracted. The experimental results were compared to Monte Carlo simulations in which the resonance energy and decay mechanism were varied. Results: The measured three-body correlations were well reproduced by the Monte Carlo simulations but were not sensitive to the decay mechanism due to the experimental resolutions. However, the three-body correlations were found to be sensitive to the resonance energy of O26. A 1{sigma} upper limit of 53 keV was extracted for the ground-state resonance energy of O26. Conclusions: Future attempts to measure the three-body correlations from the ground-state decay of O26 will be very challenging due to the need for a precise measurement of the O24 momentum at the reaction point in the target.
The two-neutron unbound ground state resonances of $^{26}$O and $^{16}$Be were populated using one-proton knockout reactions from $^{27}$F and $^{17}$B beams. A coincidence measurement of 3-body system (fragment + n + n) allowed for the decay energy
of the unbound nuclei to be reconstructed. A low energy resonance, $<$ 200 keV, was observed for the first time in the $^{24}$O + n + n system and assigned to the ground state of $^{26}$O. The $^{16}$Be ground state resonance was observed at 1.35 MeV. The 3-body correlations of the $^{14}$Be + n + n system were compared to simulations of a phase-space, sequential, and dineutron decay. The strong correlations in the n-n system from the experimental data could only be reproduced by the dineutron decay simulation providing the first evidence for a dineutron-like decay.
A new technique was developed to measure the lifetimes of neutron unbound nuclei in the picosecond range. The decay of 26O -> 24O+n+n was examined as it had been predicted to have an appreciable lifetime due to the unique structure of the neutron-ric
h oxygen isotopes. The half-life of 26O was extracted as 4.5^{+1.1}_{-1.5}(stat.) +/- 3 (sys.) ps. This corresponds to 26O having a finite lifetime at an 82% confidence level and, thus, suggests the possibility of two-neutron radioactivity.
All the time since its discovery the N$^*$(1440) baryon state, commonly known as Roper resonance, has been a state with many question marks - despite of its 4-star ranking in the particle data book. One reason is that it does not produce any explicit
resonance-like structures in the observables of $pi$N or $gamma$N reactions. Only in partial wave analyses of $pi$N scattering data a clear resonance strcuture gets obvious in the $P_{11}$ partial wave. Very recent measurements of the J/$Psi$ decay by the BES collaboration and of the $pp to nppi^+$ reaction at 1.3 GeV by the CELSIUS-WASA collaboration show for the first time a clear resonance structure in the invariant $npi^+$ mass spectrum for the Roper resonance at M $approx$ 1360 MeV with a width of about 150 MeV. These values agree very favorably with the pole position results of recent $pi$N phase shift analyses. In consequence of this very low-lying pole postion, which is roughly 100 MeV below the nominal value, the decay properties have to be reinvestigated. From our two-pion production data we see that the decay mainly proceeds via N$^* to $N$sigma$, i.e. a monopole transition as expected for the breathing mode of the nucleon.
The nuclear magnetic moment of the ground state of 57Cu has been measured to be 2.00 +/- 0.05 nuclear magnetons (nm) using the beta-NMR technique. Together with the known magnetic moment of the mirror partner 57Ni, the spin extraction value was extra
cted as -0.78 +/- 0.13. This is the heaviest isospin T=1/2 mirror pair above the 40Ca region, for which both ground state magnetic moments have been determined. Shell model calculations in full fp shell giving mu(57Cu)~2.4 nm and <sigma_z> ~0.5 imply significant shell breaking at 56Ni with the neutron number N=28.