ترغب بنشر مسار تعليمي؟ اضغط هنا

Spatial imaging of the {H_2}^+ vibrational wave function at the quantum limit

38   0   0.0 ( 0 )
 نشر من قبل Reinhard Doerner
 تاريخ النشر 2012
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We experimentally obtained a direct image of the nuclear wave functions of {H_2}^+ by dissociating the molecule via electron attachment and determining the vibrational state using the COLTRIMS technique. Our experiment visualizes the nodal structure of different vibrational states. We compare our results to the widely used reflection approximation and to quantum simulations and discuss the limits of position measurements in molecules imposed by the uncertainty principle.

قيم البحث

اقرأ أيضاً

251 - M. Waitz , R.Y. Bello , D. Metz 2018
The toolbox for imaging molecules is well-equipped today. Some techniques visualize the geometrical structure, others the electron density or electron orbitals. Molecules are many-body systems for which the correlation between the constituents is dec isive and the spatial and the momentum distribution of one electron depends on those of the other electrons and the nuclei. Such correlations have escaped direct observation by imaging techniques so far. Here, we implement an imaging scheme which visualizes correlations between electrons by coincident detection of the reaction fragments after high energy photofragmentation. With this technique, we examine the H2 two-electron wave function in which electron-electron correlation beyond the mean-field level is prominent. We visualize the dependence of the wave function on the internuclear distance. High energy photoelectrons are shown to be a powerful tool for molecular imaging. Our study paves the way for future time resolved correlation imaging at FELs and laser based X-ray sources.
We report on a direct method to measure the internuclear potential energy curve of diatomic systems. A COLTRIMS reaction microscope was used to measure the squares of the vibrational wave functions of H$_{2}$, He$_{2}$, Ne$_{2}$, and Ar$_{2}$. The Sc hrodinger equation relates the curvature of the wave function to the potential V(R) and therefore offers a simple but elegant way to extract the shape of the potential.
Doppler cooling on a narrow transition is limited by the noise of single scattering events. It shows novel features, which are in sharp contrast with cooling on a broad transition, such as a non-Gaussian momentum distribution, and divergence of its m ean square value close to the resonance. We have observed those features using 1D cooling on an intercombination transition in strontium, and compared the measurements with theoretical predictions and Monte Carlo simulations. We also find that for a very narrow transition, cooling can be improved using a dipole trap, where the clock shift is canceled.
Cold molecules provide an excellent platform for quantum information, cold chemistry, and precision measurement. Certain molecules have enhanced sensitivity to beyond Standard Model physics, such as the electrons electric dipole moment ($e$EDM). Mole cular ions are easily trappable and are therefore particularly attractive for precision measurements where sensitivity scales with interrogation time. Here, we demonstrate a spin precession measurement with second-scale coherence at the quantum projection noise (QPN) limit with hundreds of trapped molecular ions, chosen for their sensitivity to the $e$EDM rather than their amenability to state control and readout. Orientation-resolved resonant photodissociation allows us to simultaneously measure two quantum states with opposite $e$EDM sensitivity, reaching the QPN limit and fully exploiting the high count rate and long coherence.
We demonstrate a new method for non-destructive imaging of laser-cooled atoms. This spatial heterodyne technique forms a phase image by interfering a strong carrier laser beam with a weak probe beam that passes through the cold atom cloud. The figure of merit equals or exceeds that of phase-contrast imaging, and the technique can be used over a wider range of spatial scales. We show images of a dark spot MOT taken with imaging fluences as low as 61 pJ/cm^2 at a detuning of 11 linewidths, resulting in 0.0004 photons scattered per atom.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا