ترغب بنشر مسار تعليمي؟ اضغط هنا

Radiative and non-radiative local density of states on disordered plasmonic films

56   0   0.0 ( 0 )
 نشر من قبل Romain Pierrat
 تاريخ النشر 2012
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We present numerical calculations of the Local Density of Optical States (LDOS) in the near field of disordered plasmonic films. The calculations are based on an integral volume method, that takes into account polarization and retardation effects, and allows us to discriminate radiative and non-radiative contributions to the LDOS. At short distance, the LDOS is dominated by non-radiative channels, showing that changes in the spontaneous dynamics of dipole emitters are driven by non-radiative coupling to plasmon modes. Maps of radiative and non-radiative LDOS exhibit strong fluctuations, but with substantially different spatial distributions.

قيم البحث

اقرأ أيضاً

40 - D. Cao , A. Caze , M. Calabrese 2014
We present a novel method to extract the various contributions to the photonic local density of states from near-field fluorescence maps. The approach is based on the simultaneous mapping of the fluorescence intensity and decay rate, and on the rigor ous application of the reciprocity theorem. It allows us to separate the contributions of the radiative and the apparent non-radiative local density of states to the change in the decay rate. The apparent non-radiative contribution accounts for losses due to radiation out of the detection solid angle and to absorption in the environment. Data analysis relies on a new analytical calculation, and does not require the use of numerical simulations. One of the most relevant applications of the method is the characterization of nanostructures aimed at maximizing the number of photons emitted in the detection solid angle, which is a crucial issue in modern nanophotonics.
Disentangling the contributions of radiative and non-radiative localized plasmonic modes from the photonic density of states of metallic nanocavities between atomically-sharp tips and flat substrates remains an experimental challenge nowadays. Electr oluminescence due to tunnelling through the tip-substrate gap allows discerning solely the excitation of radiative modes, but this information is inherently convolved with that of the electronic structure of the system. In this work we present a fully experimental procedure to eliminate the electronic-structure factors from the scanning tunnelling microscope luminescence spectra by confronting them with spectroscopic information extracted from elastic current measurements. Comparison against electromagnetic calculations demonstrates that this procedure allows characterizing the meV shifts experienced by the dipolar and quadrupolar plasmonic modes supported by the nanocavity under atomic-scale gap size changes. Our method, thus, gives us access to the frequency-dependent radiative Purcell enhancement that a microscopic light emitter would undergo when placed at the nanocavity.
We measure the statistical distribution of the photonic local density of states in the near field of a semi-continuous gold film. By varying the distance between the measurement plane and the film, we show that near-field confined modes play a major role in the width of the distribution. Numerical simulations in good agreement with experiments allow us to point out the influence of non-radiative decay channels at short distance.
We study two lattice models, the honeycomb lattice (HCL) and a special square lattice (SQL), both reducing to the Dirac equation in the continuum limit. In the presence of disorder (gaussian potential disorder and random vector potential), we investi gate the behaviour of the density of states (DOS) numerically and analytically. While an upper bound can be derived for the DOS on the SQL at the Dirac point, which is also confirmed by numerical calculations, no such upper limit exists for the HCL in the presence of random vector potential. A careful investigation of the lowest eigenvalues indeed indicate, that the DOS can possibly be divergent at the Dirac point on the HCL. In spite of sharing a common continuum limit, these lattice models exhibit different behaviour.
We demonstrate the existence of a shuttling effect for the radiative heat flux exchanged between two bodies separated by a vacuum gap when the chemical potential of photons or the temperature difference is modulated. We show that this modulation typi cally gives rise to a supplementary flux which superimposes to the flux produced by the mean gradient, enhancing the heat exchange. When the system displays a negative differential thermal resistance, however, the radiative shuttling contributes to insulate the two bodies from each other. These results pave the way for a novel strategy for an active management of radiative heat exchanges in nonequilibrium systems.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا