ترغب بنشر مسار تعليمي؟ اضغط هنا

Distance dependence of the local density of states in the near field of a disordered plasmonic film

109   0   0.0 ( 0 )
 نشر من قبل Romain Pierrat
 تاريخ النشر 2011
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We measure the statistical distribution of the photonic local density of states in the near field of a semi-continuous gold film. By varying the distance between the measurement plane and the film, we show that near-field confined modes play a major role in the width of the distribution. Numerical simulations in good agreement with experiments allow us to point out the influence of non-radiative decay channels at short distance.


قيم البحث

اقرأ أيضاً

We present numerical calculations of the Local Density of Optical States (LDOS) in the near field of disordered plasmonic films. The calculations are based on an integral volume method, that takes into account polarization and retardation effects, an d allows us to discriminate radiative and non-radiative contributions to the LDOS. At short distance, the LDOS is dominated by non-radiative channels, showing that changes in the spontaneous dynamics of dipole emitters are driven by non-radiative coupling to plasmon modes. Maps of radiative and non-radiative LDOS exhibit strong fluctuations, but with substantially different spatial distributions.
57 - D. Cao , A. Caze , M. Calabrese 2014
We present a novel method to extract the various contributions to the photonic local density of states from near-field fluorescence maps. The approach is based on the simultaneous mapping of the fluorescence intensity and decay rate, and on the rigor ous application of the reciprocity theorem. It allows us to separate the contributions of the radiative and the apparent non-radiative local density of states to the change in the decay rate. The apparent non-radiative contribution accounts for losses due to radiation out of the detection solid angle and to absorption in the environment. Data analysis relies on a new analytical calculation, and does not require the use of numerical simulations. One of the most relevant applications of the method is the characterization of nanostructures aimed at maximizing the number of photons emitted in the detection solid angle, which is a crucial issue in modern nanophotonics.
We study two lattice models, the honeycomb lattice (HCL) and a special square lattice (SQL), both reducing to the Dirac equation in the continuum limit. In the presence of disorder (gaussian potential disorder and random vector potential), we investi gate the behaviour of the density of states (DOS) numerically and analytically. While an upper bound can be derived for the DOS on the SQL at the Dirac point, which is also confirmed by numerical calculations, no such upper limit exists for the HCL in the presence of random vector potential. A careful investigation of the lowest eigenvalues indeed indicate, that the DOS can possibly be divergent at the Dirac point on the HCL. In spite of sharing a common continuum limit, these lattice models exhibit different behaviour.
We present experimental evidence for the different mechanisms driving the fluctuations of the local density of states (LDOS) in disordered photonic systems. We establish a clear link between the microscopic structure of the material and the frequency correlation function of LDOS accessed by a near-field hyperspectral imaging technique. We show, in particular, that short- and long-range frequency correlations of LDOS are controlled by different physical processes (multiple or single scattering processes, respectively) that can be---to some extent---manipulated independently. We also demonstrate that the single scattering contribution to LDOS fluctuations is sensitive to subwavelength features of the material and, in particular, to the correlation length of its dielectric function. Our work paves a way towards a complete control of statistical properties of disordered photonic systems, allowing for designing materials with predefined correlations of LDOS.
We explore correlations of inhomogeneous local density of states (LDoS) for impure superconductors with different symmetries of the order parameter (s-wave and d-wave) and different types of scatterers (elastic and magnetic impurities). It turns out that the LDoS correlation function of superconductor always slowly decreases with distance up to the phase-breaking length $l_{phi}$ and its long-range spatial behavior is determined only by the dimensionality, as in normal metals. On the other hand, the energy dependence of this correlation function is sensitive to symmetry of the order parameter and nature of scatterers. Only in the simplest case of s-wave superconductor with elastic scatterers the inhomogeneous LDoS is directly connected to the corresponding characteristics of normal metal.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا