ترغب بنشر مسار تعليمي؟ اضغط هنا

Wrinkles as a relaxation of compressive stresses in an annular thin film

41   0   0.0 ( 0 )
 نشر من قبل Peter Bella
 تاريخ النشر 2012
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

It is well known that an elastic sheet loaded in tension will wrinkle and that the length scale of the wrinkles tends to zero with vanishing thickness of the sheet [Cerda and Mahadevan, Phys. Rev. Lett. 90, 074302 (2003)]. We give the first mathematically rigorous analysis of such a problem. Since our methods require an explicit understanding of the underlying (convex) relaxed problem, we focus on the wrinkling of an annular sheet loaded in the radial direction [Davidovitch et al., PNAS 108 (2011), no. 45]. Our main achievement is identification of the scaling law of the minimum energy as the thickness of the sheet tends to zero. This requires proving an upper bound and a lower bound that scale the same way. We prove both bounds first in a simplified Kirchhoff-Love setting and then in the nonlinear three-dimensional setting. To obtain the optimal upper bound, we need to adjust a naive construction (one family of wrinkles superimposed on a planar deformation) by introducing a cascade of wrinkles. The lower bound is more subtle, since it must be ansatz-free.

قيم البحث

اقرأ أيضاً

In this paper we formulate a geometric theory of thermal stresses. Given a temperature distribution, we associate a Riemannian material manifold to the body, with a metric that explicitly depends on the temperature distribution. A change of temperatu re corresponds to a change of the material metric. In this sense, a temperature change is a concrete example of the so-called referential evolutions. We also make a concrete connection between our geometric point of view and the multiplicative decomposition of deformation gradient into thermal and elastic parts. We study the stress-free temperature distributions of the finite-deformation theory using curvature tensor of the material manifold. We find the zero-stress temperature distributions in nonlinear elasticity. Given an equilibrium configuration, we show that a change of the material manifold, i.e. a change of the material metric will change the equilibrium configuration. In the case of a temperature change, this means that given an equilibrium configuration for a given temperature distribution, a change of temperature will change the equilibrium configuration. We obtain the explicit form of the governing partial differential equations for this equilibrium change. We also show that geometric linearization of the present nonlinear theory leads to governing equations that are identical to those of the classical linear theory of thermal stresses.
We developed a capacitor type heat flow switching device, in which electron thermal conductivity of the electrodes is actively controlled through the carrier concentration varied by an applied bias voltage. The devices consist of an amorphous p-type Si-Ge-Au alloy layer, an amorphous SiO$_2$ as the dielectric layer, and a n-type Si substrate. Both amorphous materials are characterized by very low lattice thermal conductivity, less than 1 Wm-1K-1. The Si-Ge-Au amorphous layer with 40 nm in thickness was deposited by means of molecular beam deposition technique on the 100 nm thick SiO$_2$ layer formed at the top surface of Si substrate. Bias voltage-dependent thermal conductivity and heat flow density of the fabricated device were evaluated by a time-domain thermoreflectance method at room temperature. Consequently, we observed a 55 percent increase in thermal conductivity.
Discovering and optimizing commercially viable materials for clean energy applications typically takes over a decade. Self-driving laboratories that iteratively design, execute, and learn from material science experiments in a fully autonomous loop p resent an opportunity to accelerate this research. We report here a modular robotic platform driven by a model-based optimization algorithm capable of autonomously optimizing the optical and electronic properties of thin-film materials by modifying the film composition and processing conditions. We demonstrate this platform by using it to maximize the hole mobility of organic hole transport materials commonly used in perovskite solar cells and consumer electronics. This demonstration highlights the possibilities of using autonomous laboratories to discover organic and inorganic materials relevant to materials sciences and clean energy technologies.
Realizing quantum materials in few atomic layer morphologies is a key to both observing and controlling a wide variety of exotic quantum phenomena. This includes topological electronic materials, where the tunability and dimensionality of few layer m aterials have enabled the detection of $Z_2$, Chern, and Majorana phases. Here, we report the development of a platform for thin film correlated, topological states in the magnetic rare-earth monopnictide ($RX$) system GdBi synthesized by molecular beam epitaxy. This material is known from bulk single crystal studies to be semimetallic antiferromagnets with Neel temperature $T_N =$ 28 K and is the magnetic analog of the non-$f$-electron containing system LaBi proposed to have topological surface states. Our transport and magnetization studies of thin films grown epitaxially on BaF$_2$ reveal that semimetallicity is lifted below approximately 8 crystallographic unit cells while magnetic order is maintained down to our minimum thickness of 5 crystallographic unit cells. First-principles calculations show that the non-trivial topology is preserved down to the monolayer limit, where quantum confinement and the lattice symmetry give rise to a $C=2$ Chern insulator phase. We further demonstrate the stabilization of these films against atmospheric degradation using a combination of air-free buffer and capping procedures. These results together identify thin film $RX$ materials as potential platforms for engineering topological electronic bands in correlated magnetic materials.
Non-collinear magnets exhibit a rich array of dynamic properties at microwave frequencies. They can host nanometre-scale topological textures known as skyrmions, whose spin resonances are expected to be highly sensitive to their local magnetic enviro nment. Here, we report a magnetic resonance study of an [Ir/Fe/Co/Pt] multilayer hosting Neel skyrmions at room temperature. Experiments reveal two distinct resonances of the skyrmion phase during in-plane ac excitation, with frequencies between 6-12 GHz. Complementary micromagnetic simulations indicate that the net magnetic dipole moment rotates counterclockwise (CCW) during both resonances. The magnon probability distribution for the lower-frequency resonance is localised within isolated skyrmions, unlike the higher-frequency mode which principally originates from areas between skyrmions. However, the properties of both modes depend sensitively on the out-of-plane dipolar coupling, which is controlled via the ferromagnetic layer spacing in our heterostructures. The gyrations of stable isolated skyrmions reported in this room temperature study encourage the development of new material platforms and applications based on skyrmion resonances. Moreover, our material architecture enables the resonance spectra to be tuned, thus extending the functionality of such applications over a broadband frequency range.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا