ترغب بنشر مسار تعليمي؟ اضغط هنا

A Geometric Theory of Thermal Stresses

100   0   0.0 ( 0 )
 نشر من قبل Arash Yavari
 تاريخ النشر 2009
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

In this paper we formulate a geometric theory of thermal stresses. Given a temperature distribution, we associate a Riemannian material manifold to the body, with a metric that explicitly depends on the temperature distribution. A change of temperature corresponds to a change of the material metric. In this sense, a temperature change is a concrete example of the so-called referential evolutions. We also make a concrete connection between our geometric point of view and the multiplicative decomposition of deformation gradient into thermal and elastic parts. We study the stress-free temperature distributions of the finite-deformation theory using curvature tensor of the material manifold. We find the zero-stress temperature distributions in nonlinear elasticity. Given an equilibrium configuration, we show that a change of the material manifold, i.e. a change of the material metric will change the equilibrium configuration. In the case of a temperature change, this means that given an equilibrium configuration for a given temperature distribution, a change of temperature will change the equilibrium configuration. We obtain the explicit form of the governing partial differential equations for this equilibrium change. We also show that geometric linearization of the present nonlinear theory leads to governing equations that are identical to those of the classical linear theory of thermal stresses.



قيم البحث

اقرأ أيضاً

This work continues the study of the thermal Hamiltonian, initially proposed by J. M. Luttinger in 1964 as a model for the conduction of thermal currents in solids. The previous work [DL] contains a complete study of the free model in one spatial dim ension along with a preliminary scattering result for convolution-type perturbations. This work complements the results obtained in [DL] by providing a detailed analysis of the perturbation theory for the one-dimensional thermal Hamiltonian. In more detail the following result are established: the regularity and decay properties for elements in the domain of the unperturbed thermal Hamiltonian; the determination of a class of self-adjoint and relatively compact perturbations of the thermal Hamiltonian; the proof of the existence and completeness of wave operators for a subclass of such potentials.
105 - T.M. Michelitsch 2016
We develop physically admissible lattice models in the harmonic approximation which define by Hamiltons variational principle fractional Laplacian matrices of the forms of power law matrix functions on the n -dimensional periodic and infinite lattice in n=1,2,3,..n=1,2,3,.. dimensions. The present model which is based on Hamiltons variational principle is confined to conservative non-dissipative isolated systems. The present approach yields the discrete analogue of the continuous space fractional Laplacian kernel. As continuous fractional calculus generalizes differential operators such as the Laplacian to non-integer powers of Laplacian operators, the fractional lattice approach developed in this paper generalized difference operators such as second difference operators to their fractional (non-integer) powers. Whereas differential operators and difference operators constitute local operations, their fractional generalizations introduce nonlocal long-range features. This is true for discrete and continuous fractional operators. The nonlocality property of the lattice fractional Laplacian matrix allows to describe numerous anomalous transport phenomena such as anomalous fractional diffusion and random walks on lattices. We deduce explicit results for the fractional Laplacian matrix in 1D for finite periodic and infinite linear chains and their Riesz fractional derivative continuum limit kernels.
This study derives geometric, variational discretizations of continuum theories arising in fluid dynamics, magnetohydrodynamics (MHD), and the dynamics of complex fluids. A central role in these discretizations is played by the geometric formulation of fluid dynamics, which views solutions to the governing equations for perfect fluid flow as geodesics on the group of volume-preserving diffeomorphisms of the fluid domain. Inspired by this framework, we construct a finite-dimensional approximation to the diffeomorphism group and its Lie algebra, thereby permitting a variational temporal discretization of geodesics on the spatially discretized diffeomorphism group. The extension to MHD and complex fluid flow is then made through an appeal to the theory of Euler-Poincar{e} systems with advection, which provides a generalization of the variational formulation of ideal fluid flow to fluids with one or more advected parameters. Upon deriving a family of structured integrators for these systems, we test their performance via a numerical implementation of the update schemes on a cartesian grid. Among the hallmarks of these new numerical methods are exact preservation of momenta arising from symmetries, automatic satisfaction of solenoidal constraints on vector fields, good long-term energy behavior, robustness with respect to the spatial and temporal resolution of the discretization, and applicability to irregular meshes.
An integrable Hamiltonian system presents monodromy if the action-angle variables cannot be defined globally. We consider a classical system with azimuthal symmetry and explore the topology structure of its phase space. Based on the behavior of close d orbits around singular points or regions of the energy-momentum plane, a semi-theoretical method is derived to detect classical monodromy. The validity of the monodromy test is numerically illustrated for several systems with azimuthal symmetry.
We unveil the existence of a non-trivial Berry phase associated to the dynamics of a quantum particle in a one dimensional box with moving walls. It is shown that a suitable choice of boundary conditions has to be made in order to preserve unitarity. For these boundary conditions we compute explicitly the geometric phase two-form on the parameter space. The unboundedness of the Hamiltonian describing the system leads to a natural prescription of renormalization for divergent contributions arising from the boundary.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا