ﻻ يوجد ملخص باللغة العربية
In this paper we formulate a geometric theory of thermal stresses. Given a temperature distribution, we associate a Riemannian material manifold to the body, with a metric that explicitly depends on the temperature distribution. A change of temperature corresponds to a change of the material metric. In this sense, a temperature change is a concrete example of the so-called referential evolutions. We also make a concrete connection between our geometric point of view and the multiplicative decomposition of deformation gradient into thermal and elastic parts. We study the stress-free temperature distributions of the finite-deformation theory using curvature tensor of the material manifold. We find the zero-stress temperature distributions in nonlinear elasticity. Given an equilibrium configuration, we show that a change of the material manifold, i.e. a change of the material metric will change the equilibrium configuration. In the case of a temperature change, this means that given an equilibrium configuration for a given temperature distribution, a change of temperature will change the equilibrium configuration. We obtain the explicit form of the governing partial differential equations for this equilibrium change. We also show that geometric linearization of the present nonlinear theory leads to governing equations that are identical to those of the classical linear theory of thermal stresses.
This work continues the study of the thermal Hamiltonian, initially proposed by J. M. Luttinger in 1964 as a model for the conduction of thermal currents in solids. The previous work [DL] contains a complete study of the free model in one spatial dim
We develop physically admissible lattice models in the harmonic approximation which define by Hamiltons variational principle fractional Laplacian matrices of the forms of power law matrix functions on the n -dimensional periodic and infinite lattice
This study derives geometric, variational discretizations of continuum theories arising in fluid dynamics, magnetohydrodynamics (MHD), and the dynamics of complex fluids. A central role in these discretizations is played by the geometric formulation
An integrable Hamiltonian system presents monodromy if the action-angle variables cannot be defined globally. We consider a classical system with azimuthal symmetry and explore the topology structure of its phase space. Based on the behavior of close
We unveil the existence of a non-trivial Berry phase associated to the dynamics of a quantum particle in a one dimensional box with moving walls. It is shown that a suitable choice of boundary conditions has to be made in order to preserve unitarity.