ترغب بنشر مسار تعليمي؟ اضغط هنا

Exponential decay and resonances in a driven system

83   0   0.0 ( 0 )
 نشر من قبل Philippe Briet
 تاريخ النشر 2012
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

We study the resonance phenomena for time periodic perturbations of a Hamiltonian $H$ on the Hilbert space $L^2(mathbb R ^d)$. Here, resonances are characterized in terms of time behavior of the survival probability. Our approach uses the Floquet-Howland formalism combined with the results of L. Cattaneo, J.M. Graf and W. Hunziker on resonances for time independent perturbations.

قيم البحث

اقرأ أيضاً

We investigate the influence of an electric field on trapped modes arising in a two-dimensional curved quantum waveguide ${bf Omega}$ i.e. bound states of the corresponding Laplace operator $-Delta_{{bf Omega}}$. Here the curvature of the guide is su pposed to satisfy some assumptions of analyticity, and decays as $O(|s|^{-varepsilon}), varepsilon > 3$ at infinity. We show that under conditions on the electric field $ bf F$, ${bf H}(F):= -Delta_{{bf Omega}} + {bf F}. {bf x} $ has resonances near the discrete eigenvalues of $-Delta_{{bf Omega}}$.
We consider the Hamiltonian $H$ of a 3D spinless non-relativistic quantum particle subject to parallel constant magnetic and non-constant electric field. The operator $H$ has infinitely many eigenvalues of infinite multiplicity embedded in its contin uous spectrum. We perturb $H$ by appropriate scalar potentials $V$ and investigate the transformation of these embedded eigenvalues into resonances. First, we assume that the electric potentials are dilation-analytic with respect to the variable along the magnetic field, and obtain an asymptotic expansion of the resonances as the coupling constant $varkappa$ of the perturbation tends to zero. Further, under the assumption that the Fermi Golden Rule holds true, we deduce estimates for the time evolution of the resonance states with and without analyticity assumptions; in the second case we obtain these results as a corollary of suitable Mourre estimates and a recent article of Cattaneo, Graf and Hunziker cite{cgh}. Next, we describe sets of perturbations $V$ for which the Fermi Golden Rule is valid at each embedded eigenvalue of $H$; these sets turn out to be dense in various suitable topologies. Finally, we assume that $V$ decays fast enough at infinity and is of definite sign, introduce the Krein spectral shift function for the operator pair $(H+V, H)$, and study its singularities at the energies which coincide with eigenvalues of infinite multiplicity of the unperturbed operator $H$.
The question of whether it is possible to compute scattering resonances of Schrodinger operators - independently of the particular potential - is addressed. A positive answer is given, and it is shown that the only information required to be known a priori is the size of the support of the potential. The potential itself is merely required to be $mathcal{C}^1$. The proof is constructive, providing a universal algorithm which only needs to access the values of the potential at any requested point.
We define resonances for finitely perturbed quantum walks as poles of the scattering matrix in the lower half plane. We show a resonance expansion which describes the time evolution in terms of resonances and corresponding Jordan chains. In particula r, the decay rate of the survival probability is given by the imaginary part of resonances and the multiplicity. We prove generic simplicity of the resonances, although there are quantum walks with multiple resonances.
We study, both theoretically and experimentally, driven Rabi oscillations of a single electron spin coupled to a nuclear spin bath. Due to the long correlation time of the bath, two unusual features are observed in the oscillations. The decay follows a power law, and the oscillations are shifted in phase by a universal value of ~pi/4. These properties are well understood from a theoretical expression that we derive here in the static limit for the nuclear bath. This improved understanding of the coupled electron-nuclear system is important for future experiments using the electron spin as a qubit.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا