ترغب بنشر مسار تعليمي؟ اضغط هنا

Dynamical resonances and SSF singularities for a magnetic Schroedinger operator

41   0   0.0 ( 0 )
 نشر من قبل Vincent Bruneau
 تاريخ النشر 2008
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

We consider the Hamiltonian $H$ of a 3D spinless non-relativistic quantum particle subject to parallel constant magnetic and non-constant electric field. The operator $H$ has infinitely many eigenvalues of infinite multiplicity embedded in its continuous spectrum. We perturb $H$ by appropriate scalar potentials $V$ and investigate the transformation of these embedded eigenvalues into resonances. First, we assume that the electric potentials are dilation-analytic with respect to the variable along the magnetic field, and obtain an asymptotic expansion of the resonances as the coupling constant $varkappa$ of the perturbation tends to zero. Further, under the assumption that the Fermi Golden Rule holds true, we deduce estimates for the time evolution of the resonance states with and without analyticity assumptions; in the second case we obtain these results as a corollary of suitable Mourre estimates and a recent article of Cattaneo, Graf and Hunziker cite{cgh}. Next, we describe sets of perturbations $V$ for which the Fermi Golden Rule is valid at each embedded eigenvalue of $H$; these sets turn out to be dense in various suitable topologies. Finally, we assume that $V$ decays fast enough at infinity and is of definite sign, introduce the Krein spectral shift function for the operator pair $(H+V, H)$, and study its singularities at the energies which coincide with eigenvalues of infinite multiplicity of the unperturbed operator $H$.

قيم البحث

اقرأ أيضاً

We consider the Schrodinger operator with constant magnetic field defined on the half-plane with a Dirichlet boundary condition, $H_0$, and a decaying electric perturbation $V$. We analyze the spectral density near the Landau levels, which are thresh olds in the spectrum of $H_0,$ by studying the Spectral Shift Function (SSF) associated to the pair $(H_0+V,{H_0})$. For perturbations of a fixed sign, we estimate the SSF in terms of the eigenvalue counting function for certain compact operators. If the decay of $V$ is power-like, then using pseudodifferential analysis, we deduce that there are singularities at the thresholds and we obtain the corresponding asymptotic behavior of the SSF. Our technique gives also results for the Neumann boundary condition.
We consider Schroedinger operators on regular metric trees and prove Lieb-Thirring and Cwikel-Lieb-Rozenblum inequalities for their negative eigenvalues. The validity of these inequalities depends on the volume growth of the tree. We show that the bo unds are valid in the endpoint case and reflect the correct order in the weak or strong coupling limit.
370 - Pablo Miranda 2015
We consider the discrete spectrum of the two-dimensional Hamiltonian $H=H_0+V$, where $H_0$ is a Schrodinger operator with a non-constant magnetic field $B$ that depends only on one of the spatial variables, and $V$ is an electric potential that deca ys at infinity. We study the accumulation rate of the eigenvalues of H in the gaps of its essential spectrum. First, under some general conditions on $B$ and $V$, we introduce effective Hamiltonians that govern the main asymptotic term of the eigenvalue counting function. Further, we use the effective Hamiltonians to find the asymptotic behavior of the eigenvalues in the case where the potential V is a power-like decaying function and in the case where it is a compactly supported function, showing a semiclassical behavior of the eigenvalues in the first case and a non-semiclassical behavior in the second one. We also provide a criterion for the finiteness of the number of eigenvalues in the gaps of the essential spectrum of $H$
We consider the 3D Schrodinger operator $H_0$ with constant magnetic field $B$ of scalar intensity $b>0$, and its perturbations $H_+$ (resp., $H_-$) obtained by imposing Dirichlet (resp., Neumann) conditions on the boundary of the bounded domain $Ome ga_{rm in} subset {mathbb R}^3$. We introduce the Krein spectral shift functions $xi(E;H_pm,H_0)$, $E geq 0$, for the operator pairs $(H_pm,H_0)$, and study their singularities at the Landau levels $Lambda_q : = b(2q+1)$, $q in {mathbb Z}_+$, which play the role of thresholds in the spectrum of $H_0$. We show that $xi(E;H_+,H_0)$ remains bounded as $E uparrow Lambda_q$, $q in {mathbb Z}_+$ being fixed, and obtain three asymptotic terms of $xi(E;H_-,H_0)$ as $E uparrow Lambda_q$, and of $xi(E;H_pm,H_0)$ as $E downarrow Lambda_q$. The first two terms are independent of the perturbation while the third one involves the {em logarithmic capacity} of the projection of $Omega_{rm in}$ onto the plane perpendicular to $B$.
We prove new spectral enclosures for the non-real spectrum of a class of $2times2$ block operator matrices with self-adjoint operators $A$ and $D$ on the diagonal and operators $B$ and $-B^*$ as off-diagonal entries. One of our main results resembles Gershgorins circle theorem. The enclosures are applied to $J$-frame operators.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا