ترغب بنشر مسار تعليمي؟ اضغط هنا

The fate of high redshift massive compact galaxies in dense environments

162   0   0.0 ( 0 )
 نشر من قبل Tobias Kaufmann
 تاريخ النشر 2012
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Massive compact galaxies seem to be more common at high redshift than in the local universe, especially in denser environments. To investigate the fate of such massive galaxies identified at z~2 we analyse the evolution of their properties in three cosmological hydrodynamical simulations that form virialised galaxy groups of mass ~10^13 Msun hosting a central massive elliptical/S0 galaxy by redshift zero. We find that at redshift ~2 the population of galaxies with M_*> 2 10^10 Msun is diverse in terms of mass, velocity dispersion, star formation and effective radius, containing both very compact and relatively extended objects. In each simulation all the compact satellite galaxies have merged into the central galaxy by redshift 0 (with the exception of one simulation where one of such satellite galaxy survives). Satellites of similar mass at z = 0 are all less compact than their high redshift counterparts. They form later than the galaxies in the z = 2 sample and enter the group potential at z < 1, when dynamical friction times are longer than the Hubble time. Also, by z = 0 the central galaxies have increased substantially their characteristic radius via a combination of in situ star formation and mergers. Hence in a group environment descendants of compact galaxies either evolve towards larger sizes or they disappear before the present time as a result of the environment in which they evolve. Since the group-sized halos that we consider are representative of dense environments in the LambdaCDM cosmology, we conclude that the majority of high redshift compact massive galaxies do not survive until today as a result of the environment.



قيم البحث

اقرأ أيضاً

We have analysed the rest-frame far infrared (FIR) properties of a sample of massive (Mstar > 10^11Msun) galaxies at 2<z<3 in the GOODS (Great Observatories Origins Deep Survey) North field using the Spectral and Photometric Imaging Receiver (SPIRE) instrument aboard the Herschel Space Observatory. To conduct this analysis we take advantage of the data from the HerMES key program. The sample comprises 45 massive galaxies with structural parameters characterised with HST NICMOS-3. We study detections at submm Herschel bands, together with Spitzer 24{mu}m data, as a function of the morphological type, mass and size. We find that 26/45 sources are detected at MIPS-24{mu}m and 15/45 (all MIPS-24{mu}m detections) are detected at SPIRE-250{mu}m, with disk-like galaxies more easily detected. We derive star formation rates (SFR) and specific star formation rates (sSFR) by fitting the spectral energy distribution (SED) of our sources, taking into account non-detections for SPIRE and systematic effects for MIPS derived quantities. We find that the mean SFR for the spheroidal galaxies (50-100 Msun*yr^-1) is substantially (a factor ~ 3) lower than the mean value presented by disk-like galaxies (250-300 Msun*yr^-1).
We study the preferred environments of $z sim 0$ massive relic galaxies ($M_star gtrsim 10^{10}~mathrm{M_odot}$ galaxies with little or no growth from star formation or mergers since $z sim 2$). Significantly, we carry out our analysis on both a larg e cosmological simulation and an observed galaxy catalogue. Working on the Millennium I-WMAP7 simulation we show that the fraction of today massive objects which have grown less than 10 per cent in mass since $z sim 2$ is ~0.04 per cent for the whole massive galaxy population with $M_star > 10^{10}~mathrm{M_odot}$. This fraction rises to ~0.18 per cent in galaxy clusters, confirming that clusters help massive galaxies remain unaltered. Simulations also show that massive relic galaxies tend to be closer to cluster centres than other massive galaxies. Using the New York University Value-Added Galaxy Catalogue, and defining relics as $M_star gtrsim 10^{10}~mathrm{M_odot}$ early-type galaxies with colours compatible with single-stellar population ages older than 10 Gyr, and which occupy the bottom 5-percentile in the stellar mass-size distribution, we find $1.11 pm 0.05$ per cent of relics among massive galaxies. This fraction rises to $2.4 pm 0.4$ per cent in high-density environments. Our findings point in the same direction as the works by Poggianti et al. and Stringer et al. Our results may reflect the fact that the cores of the clusters are created very early on, hence the centres host the first cluster members. Near the centres, high-velocity dispersions and harassment help cluster core members avoid the growth of an accreted stellar envelope via mergers, while a hot intracluster medium prevents cold gas from reaching the galaxies, inhibiting star formation.
134 - Alan Stockton , Hsin-Yi Shih , 2009
From a search of a portion of the sky covered by the SDSS and UKIDSS databases, we have located 2 galaxies at z~0.5 that have properties similar to those of the luminous passive compact galaxies found at z~2.5. From Keck moderate-resolution spectrosc opy and laser-guided adaptive-optics imaging of these galaxies, we can begin to put together a more detailed picture of what their high-redshift counterparts might be like. Spectral-synthesis models that fit the u to K photometry also seem to give good fits to the spectral features. From these models, we estimate masses in the range of 3-4 10^11 M_sun for both galaxies. Under the assumption that these are spheroidal galaxies, our velocity dispersions give estimated masses about a factor of 3 smaller. However, our high-resolution imaging data indicate that these galaxies are not normal spheroids, and the interpretation of the kinematic data depends critically on the actual morphologies and the nature of the stellar orbits. While recent suggestions that the population of high-redshift compact galaxies is present locally as the inner regions of local massive elliptical galaxies are quite plausible, the peak mass surface densities of the two galaxies we discuss here appear to be up to a factor of 10 higher than those of the highest density local ellipticals, assuming that our photometric masses are roughly correct. It thus seems possible that some dynamical puffing-up of the high-redshift galaxies might still be required in this scenario.
In order to investigate the structure and dynamics of the recently discovered massive (M_* > 10^11 M_sun) compact z~2 galaxies, cosmological hydrodynamical/N-body simulations of a proto-cluster region have been undertaken. At z=2, the highest resolut ion simulation contains ~5800 resolved galaxies, of which 509, 27 and 5 have M_* > 10^10 M_sun, > 10^11 M_sun and > 4x10^11 M_sun, respectively. Effective radii and characteristic stellar densities have been determined for all galaxies. At z=2, for the definitely well resolved mass range of M_* > 10^11 Msun, the mass-size relation is consistent with observational findings for the most compact z~2 galaxies. The very high velocity dispersion recently measured for a compact z~2 galaxy (~510 km/s; van Dokkum et al 2009) can be matched at about the 1-sigma level, although a somewhat larger mass than the estimated M_* ~ 2 x 10^11 M_sun is indicated. For the above mass range, the galaxies have an average axial ratio <b/a> = 0.64 +/- 0.02 with a dispersion of 0.1, an average rotation to 1D velocity dispersion ratio <v/sigma> = 0.46 +/- 0.06 with a dispersion of 0.3, and a maximum value of v/sigma ~ 1.1. Rotation and velocity anisotropy both contribute in flattening the compact galaxies. Some of the observed compact galaxies appear flatter than any of the simulated galaxies. Finally, it is found that the massive compact galaxies are strongly baryon dominated in their inner parts, with typical dark matter mass fractions of order only 20% inside of r=2R_eff.
115 - M. Chevance 2012
Recent deep Hubble Space Telescope WFC3 imaging suggests that a majority of compact quiescent massive galaxies at z~2 may contain disks. To investigate this claim, we have compared the ellipticity distribution of 31 carefully selected high-redshift m assive quiescent compact galaxies to a set of mass-selected ellipticity and Sersic index distributions obtained from 2D structural fits to ~40,000$ nearby galaxies from the Sloan Digital Sky Survey. A Kolmogorov-Smirnov test shows that the distribution of ellipticities for the high-redshift galaxies is consistent with the ellipticity distribution of a similarly chosen sample of massive early-type galaxies. However the distribution of Sersic indices for the high-redshift sample is inconsistent with that of local early-type galaxies, and instead resembles that of local disk-dominated populations. The mismatch between the properties of high-redshift compact galaxies and those of both local early-type and disk-dominated systems leads us to conclude that the basic structures of high-redshift compact galaxies probably do not closely resemble those of any single local galaxy population. Any galaxy population analog to the high-redshift compact galaxies that exists at the current epoch is either a mix of different types of galaxies, or possibly a unique class of objects on their own.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا