ترغب بنشر مسار تعليمي؟ اضغط هنا

Cosmological Simulations of Massive Compact High-z Galaxies

115   0   0.0 ( 0 )
 نشر من قبل Sune Toft
 تاريخ النشر 2009
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

In order to investigate the structure and dynamics of the recently discovered massive (M_* > 10^11 M_sun) compact z~2 galaxies, cosmological hydrodynamical/N-body simulations of a proto-cluster region have been undertaken. At z=2, the highest resolution simulation contains ~5800 resolved galaxies, of which 509, 27 and 5 have M_* > 10^10 M_sun, > 10^11 M_sun and > 4x10^11 M_sun, respectively. Effective radii and characteristic stellar densities have been determined for all galaxies. At z=2, for the definitely well resolved mass range of M_* > 10^11 Msun, the mass-size relation is consistent with observational findings for the most compact z~2 galaxies. The very high velocity dispersion recently measured for a compact z~2 galaxy (~510 km/s; van Dokkum et al 2009) can be matched at about the 1-sigma level, although a somewhat larger mass than the estimated M_* ~ 2 x 10^11 M_sun is indicated. For the above mass range, the galaxies have an average axial ratio <b/a> = 0.64 +/- 0.02 with a dispersion of 0.1, an average rotation to 1D velocity dispersion ratio <v/sigma> = 0.46 +/- 0.06 with a dispersion of 0.3, and a maximum value of v/sigma ~ 1.1. Rotation and velocity anisotropy both contribute in flattening the compact galaxies. Some of the observed compact galaxies appear flatter than any of the simulated galaxies. Finally, it is found that the massive compact galaxies are strongly baryon dominated in their inner parts, with typical dark matter mass fractions of order only 20% inside of r=2R_eff.



قيم البحث

اقرأ أيضاً

247 - G. A. Mamon , Paris 2009
The nature of compact groups (CGs) of galaxies, apparently so dense that the galaxies often overlap, is still a subject of debate: Are CGs roughly as dense in 3D as they appear in projection? Or are they caused by chance alignments of galaxies along the line-of-sight, within larger virialized groups or even longer filamentary structures? The nature of CGs is re-appraised using the z=0 outputs of three galaxy formation models, applied to the dissipationless Millennium Simulation. The same selection criteria are applied to mock galaxy catalogs from these models as have been applied by Hickson and co-workers in redshift space. We find 20 times as many mock CGs as the `HCGs found by Hickson within a distance corresponding to 9000 km/s. This very low (5%) HCG completeness is caused by Hickson missing groups that were either faint, near the surface brightness threshold, of small angular size, or with a dominant brightest galaxy. We find that most velocity-filtered CGs are physically dense, regardless of the precise threshold used in 3D group size and line-of-sight elongation, and of the galaxy formation model used. This result also holds for mock CGs with the same selection biases as was found for the HCGs.
The early Universe hosted a large population of small dark matter `minihalos that were too small to cool and form stars on their own. These existed as static objects around larger galaxies until acted upon by some outside influence. Outflows, which h ave been observed around a variety of galaxies, can provide this influence in such a way as to collapse, rather than disperse the minihalo gas. Gray & Scannapieco performed an investigation in which idealized spherically-symmetric minihalos were struck by enriched outflows. Here we perform high-resolution cosmological simulations that form realistic minihalos, which we then extract to perform a large suite of simulations of outflow-minihalo interactions including non-equilibrium chemical reactions. In all models, the shocked minihalo forms molecules through non-equilibrium reactions, and then cools to form dense chemically homogenous clumps of star-forming gas. The formation of these high-redshift clusters will be observable with the next generation of telescopes, and the largest of them should survive to the present day, having properties similar to halo globular clusters.
120 - Jia Liu 2017
The non-zero mass of neutrinos suppresses the growth of cosmic structure on small scales. Since the level of suppression depends on the sum of the masses of the three active neutrino species, the evolution of large-scale structure is a promising tool to constrain the total mass of neutrinos and possibly shed light on the mass hierarchy. In this work, we investigate these effects via a large suite of N-body simulations that include massive neutrinos using an analytic linear-response approximation: the Cosmological Massive Neutrino Simulations (MassiveNuS). The simulations include the effects of radiation on the background expansion, as well as the clustering of neutrinos in response to the nonlinear dark matter evolution. We allow three cosmological parameters to vary: the neutrino mass sum M_nu in the range of 0-0.6 eV, the total matter density Omega_m, and the primordial power spectrum amplitude A_s. The rms density fluctuation in spheres of 8 comoving Mpc/h (sigma_8) is a derived parameter as a result. Our data products include N-body snapshots, halo catalogues, merger trees, ray- traced galaxy lensing convergence maps for four source redshift planes between z_s=1-2.5, and ray-traced cosmic microwave background lensing convergence maps. We describe the simulation procedures and code validation in this paper. The data are publicly available at http://columbialensing.org.
We use high-resolution cosmological zoom simulations with ~200 pc resolution at z = 2 and various prescriptions for galactic outflows in order to explore the impact of winds on the morphological, dynamical, and structural properties of eight individu al galaxies with halo masses ~ 10^11--2x10^12 Msun at z = 2. We present a detailed comparison to spatially and spectrally resolved H{alpha} and other observations of z ~ 2 galaxies. We find that simulations without winds produce massive, compact galaxies with low gas fractions, super-solar metallicities, high bulge fractions, and much of the star formation concentrated within the inner kpc. Strong winds are required to maintain high gas fractions, redistribute star-forming gas over larger scales, and increase the velocity dispersion of simulated galaxies, more in agreement with the large, extended, turbulent disks typical of high-redshift star-forming galaxies. Winds also suppress early star formation to produce high-redshift cosmic star formation efficiencies in better agreement with observations. Sizes, rotation velocities, and velocity dispersions all scale with stellar mass in accord with observations. Our simulations produce a diversity of morphological characteristics - among our three most massive galaxies, we find a quiescent grand-design spiral, a very compact star-forming galaxy, and a clumpy disk undergoing a minor merger; the clumps are evident in H{alpha} but not in the stars. Rotation curves are generally slowly rising, particularly when calculated using azimuthal velocities rather than enclosed mass. Our results are broadly resolution-converged. These results show that cosmological simulations including outflows can produce disk galaxies similar to those observed during the peak epoch of cosmic galaxy growth.
130 - J. M. Gabor 2010
Massive galaxies today typically are not forming stars despite being surrounded by hot gaseous halos with short central cooling times. This likely owes to some form of quenching feedback such as merger-driven quasar activity or radio jets emerging fr om central black holes. Here we implement heuristic prescriptions for these phenomena on-the-fly within cosmological hydrodynamic simulations. We constrain them by comparing to observed luminosity functions and color-magnitude diagrams from SDSS. We find that quenching from mergers alone does not produce a realistic red sequence, because 1 - 2 Gyr after a merger the remnant accretes new fuel and star formation reignites. In contrast, quenching by continuously adding thermal energy to hot gaseous halos quantitatively matches the red galaxy luminosity function and produces a reasonable red sequence. Small discrepancies remain - a shallow red sequence slope suggests that our models underestimate metal production or retention in massive red galaxies, while a deficit of massive blue galaxies may reflect the fact that observed heating is intermittent rather than continuous. Overall, injection of energy into hot halo gas appears to be a necessary and sufficient condition to broadly produce red and dead massive galaxies as observed.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا