ﻻ يوجد ملخص باللغة العربية
In this paper we investigate an extremal problem on binary phylogenetic trees. Given two such trees $T_1$ and $T_2$, both with leaf-set ${1,2,...,n}$, we are interested in the size of the largest subset $S subseteq {1,2,...,n}$ of leaves in a common subtree of $T_1$ and $T_2$. We show that any two binary phylogenetic trees have a common subtree on $Omega(sqrt{log{n}})$ leaves, thus improving on the previously known bound of $Omega(loglog n)$ due to M. Steel and L. Szekely. To achieve this improved bound, we first consider two special cases of the problem: when one of the trees is balanced or a caterpillar, we show that the largest common subtree has $Omega(log n)$ leaves. We then handle the general case by proving and applying a Ramsey-type result: that every binary tree contains either a large balanced subtree or a large caterpillar. We also show that there are constants $c, alpha > 0$ such that, when both trees are balanced, they have a common subtree on $c n^alpha$ leaves. We conjecture that it is possible to take $alpha = 1/2$ in the unrooted case, and both $c = 1$ and $alpha = 1/2$ in the rooted case.
A subtree of a tree is any induced subgraph that is again a tree (i.e., connected). The mean subtree order of a tree is the average number of vertices of its subtrees. This invariant was first analyzed in the 1980s by Jamison. An intriguing open ques
We consider the quantity $P(G)$ associated with a graph $G$ that is defined as the probability that a randomly chosen subtree of $G$ is spanning. Motivated by conjectures due to Chin, Gordon, MacPhee and Vincent on the behaviour of this graph invaria
Among many topological indices of trees the sum of distances $sigma(T)$ and the number of subtrees $F(T)$ have been a long standing pair of graph invariants that are well known for their negative correlation. That is, among various given classes of t
Given a set of points $P$ and axis-aligned rectangles $mathcal{R}$ in the plane, a point $p in P$ is called emph{exposed} if it lies outside all rectangles in $mathcal{R}$. In the emph{max-exposure problem}, given an integer parameter $k$, we want to
We introduce and investigate the approximability of the maximum binary tree problem (MBT) in directed and undirected graphs. The goal in MBT is to find a maximum-sized binary tree in a given graph. MBT is a natural variant of the well-studied longest