ﻻ يوجد ملخص باللغة العربية
We consider the quantity $P(G)$ associated with a graph $G$ that is defined as the probability that a randomly chosen subtree of $G$ is spanning. Motivated by conjectures due to Chin, Gordon, MacPhee and Vincent on the behaviour of this graph invariant depending on the edge density, we establish first that $P(G)$ is bounded below by a positive constant provided that the minimum degree is bounded below by a linear function in the number of vertices. Thereafter, the focus is shifted to the classical ErdH{o}s-Renyi random graph model $G(n,p)$. It is shown that $P(G)$ converges in probability to $e^{-1/(ep_{infty})}$ if $p to p_{infty} > 0$ and to $0$ if $p to 0$.
This extends a theorem of Davenport and Erdos on sequences of rational integers to sequences of integral ideals in arbitrary number fields $K$. More precisely, we introduce a logarithmic density for sets of integral ideals in $K$ and provide a formul
We study the large-$n$ limit of the probability $p_{2n,2k}$ that a random $2ntimes 2n$ matrix sampled from the real Ginibre ensemble has $2k$ real eigenvalues. We prove that, $$lim_{nrightarrow infty}frac {1}{sqrt{2n}} log p_{2n,2k}=lim_{nrightarrow
The bandwidth theorem [Mathematische Annalen, 343(1):175--205, 2009] states that any $n$-vertex graph $G$ with minimum degree $(frac{k-1}{k}+o(1))n$ contains all $n$-vertex $k$-colourable graphs $H$ with bounded maximum degree and bandwidth $o(n)$. I
The Mahonian statistic is the number of
A subtree of a tree is any induced subgraph that is again a tree (i.e., connected). The mean subtree order of a tree is the average number of vertices of its subtrees. This invariant was first analyzed in the 1980s by Jamison. An intriguing open ques