ترغب بنشر مسار تعليمي؟ اضغط هنا

Reconstruction efficiency and discovery potential of a Mediterranean neutrino telescope: A simulation study using the Hellenic Open University Reconstruction & Simulation (HOURS) package

65   0   0.0 ( 0 )
 نشر من قبل Apostolos Tsirigotis Dr
 تاريخ النشر 2012
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We report on the evaluation of the performance of a Mediterranean very large volume neutrino telescope. We present results of our studies concerning the capability of the telescope in detecting/discovering galactic (steady point sources) and extragalactic, transient (Gamma Ray Bursts) high energy neutrino sources as well as measuring ultra high energy diffuse neutrino fluxes. The neutrino effective area and angular resolution are presented as a function of the neutrino energy, and the background event rate (atmospheric neutrinos and muons) is estimated. The discovery potential of the neutrino telescope is evaluated and the experimental time required for a significant discovery of potential neutrino emitters (known from their gamma ray emission, assumedly produced by hadronic interactions) is estimated. For the simulation we use the HOU Reconstruction & Simulation (HOURS) software package.



قيم البحث

اقرأ أيضاً

In this document the simulation part of the Hellenic Open University Reconstruction & Simulation (HOURS) software package is described in detail. HOURS can be used for the generation, simulation, pattern recognition and reconstruction of high energy neutrino produced events in a very large volume neutrino telescope. The objective is to provide as accurate as possible a representation of event properties in a wide range of neutrino telescope configurations and medium optical properties. Moreover, HOURS contains software for the simulation and reconstruction of Extensive Air Showers (EAS) using the HEllenic LYceum Cosmic Observatories Network (HELYCON) scintillation counters. Using the information offered by the simulation/reconstruction of any EAS, and by considering the showers energetic muons that penetrate the sea to the depth of the neutrino telescope, it is possible to study the joint performance of the neutrino and EAS detectors for physics or calibration purposes. HOURS has been used extensively for the optimization, development of calibration techniques and performance evaluation of the planned Mediterranean neutrino telescope, KM3NeT (km 3 Neutrino Telescope). The results of these studies have been published to various international scientific journals. The code and further information may be found on the HOURS web page: http://physicslab.eap.gr/EN/Simulation_software.html .
An algorithm is presented, that provides a fast and robust reconstruction of neutrino induced upward-going muons and a discrimination of these events from downward-going atmospheric muon background in data collected by the ANTARES neutrino telescope. The algorithm consists of a hit merging and hit selection procedure followed by fitting steps for a track hypothesis and a point-like light source. It is particularly well-suited for real time applications such as online monitoring and fast triggering of optical follow-up observations for multi-messenger studies. The performance of the algorithm is evaluated with Monte Carlo simulations and various distributions are compared with that obtained in ANTARES data.
100 - Dmitry Zaborov 2018
KM3NeT is a new generation neutrino telescope currently under construction at two sites in the Mediterranean Sea. At the Capo Passero site, 100 km off-shore Sicily, Italy, a volume of more than one cubic kilometre of water will be instrumented with o ptical sensors. This instrument, called ARCA, is optimized for observing cosmic sources of TeV and PeV neutrinos. The other site, 40 km off-shore Toulon, France, will host a much denser array of optical sensors, ORCA. With an energy threshold of a few GeV, ORCA will be capable to determine the neutrino mass hierarchy through precision measurements of atmospheric neutrino oscillations. In this contribution, we review the scientific goals of KM3NeT and the status of its construction. We also discuss the scientific potential of a neutrino beam from Protvino, Russia to ORCA. We show that such an experiment would allow for a measurement of the CP-violating phase in the neutrino mixing matrix. To achieve a sensitivity competitive with that of the other planned long-baseline neutrino experiments such as DUNE and T2HK, an upgrade of the Protvino accelerator complex will be necessary.
Automated searches for strong gravitational lensing in optical imaging survey datasets often employ machine learning and deep learning approaches. These techniques require more example systems to train the algorithms than have presently been discover ed, which creates a need for simulated images as training dataset supplements. This work introduces and summarizes deeplenstronomy, an open-source Python package that enables efficient, large-scale, and reproducible simulation of images of astronomical systems. A full suite of unit tests, documentation, and example notebooks are available at https://deepskies.github.io/deeplenstronomy/ .
The High Energy Stereoscopic System (H.E.S.S.) is an array of five Imaging Atmospheric Cherenkov Telescopes (IACTs) designed to detect cosmogenic gamma-rays with very high energies. Originally consisting of just four identical IACTs (CT1-4) with an e ffective mirror diameter of 12$,$m each, it was expanded with a fifth IACT (CT5) with a mirror diameter of 28$,$m in 2012. Being the largest IACT worldwide, CT5 allows to lower the energy threshold of H.E.S.S., making the array sensitive at energies where space-based detectors run out of statistics. Events can be analysed either monoscopically (i.e. using only information of CT5) or stereoscopically (requiring at least two triggered telescopes per event). To achieve a good performance, a sophisticated event reconstruction and analysis framework is indispensable. This is particularly important for H.E.S.S. since it is now the first IACT array that consists of different telescope types. An advanced reconstruction method is based on a semi-analytical model of electromagnetic particle showers in the atmosphere (model analysis). The properties of the primary particle are reconstructed by comparing the image recorded by each triggered telescope with the Cherenkov emission from the shower model using a log-likelihood maximisation. Due to its performance, this method has become one of the standard analysis techniques applied to CT1-4 data. Now it has been modified for use with the five-telescope array. We present the adapted model analysis and its performance in both monoscopic and stereoscopic analysis mode.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا