ﻻ يوجد ملخص باللغة العربية
Automated searches for strong gravitational lensing in optical imaging survey datasets often employ machine learning and deep learning approaches. These techniques require more example systems to train the algorithms than have presently been discovered, which creates a need for simulated images as training dataset supplements. This work introduces and summarizes deeplenstronomy, an open-source Python package that enables efficient, large-scale, and reproducible simulation of images of astronomical systems. A full suite of unit tests, documentation, and example notebooks are available at https://deepskies.github.io/deeplenstronomy/ .
We describe a new open source package for calculating properties of galaxy clusters, including NFW halo profiles with and without the effects of cluster miscentering. This pure-Python package, cluster-lensing, provides well-documented and easy-to-use
Advanced LIGO and Advanced Virgo could observe the first lensed gravitational waves in the coming years, while the future Einstein Telescope could observe hundreds of lensed events. Ground-based gravitational-wave detectors can resolve arrival time d
Strong gravitational lensing, which can make a background source galaxy appears multiple times due to its light rays being deflected by the mass of one or more foreground lens galaxies, provides astronomers with a powerful tool to study dark matter,
We develop a general data-driven and template-free method for the extraction of event waveforms in the presence of background noise. Recent gravitational-wave observations provide one of the significant scientific areas requiring data analysis and wa
We critically examine the evidence available of the early ideas on the bending of light due to a gravitational attraction, which led to the concept of gravitational lenses, and attempt to present an undistorted historical perspective. Contrary to a w