ترغب بنشر مسار تعليمي؟ اضغط هنا

A Radial Velocity Study of CTCV J1300-3052

51   0   0.0 ( 0 )
 نشر من قبل Christopher Savoury
 تاريخ النشر 2012
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We present time-resolved spectroscopy of the eclipsing, short period cataclysmic variable CTCV J1300-3052. Using absorption features from the secondary star, we determine the radial velocity semi-amplitude of the secondary star to be K2 = 378 pm 6 km/s, and its projected rotational velocity to be v sin i = 125 pm 7 km/s. Using these parameters and Monte Carlo techniques, we obtain masses of M1 = 0.79 pm 0.05 MSun for the white dwarf primary and M2 = 0.198 pm 0.029 MSun for the M-type secondary star. These parameters are found to be in excellent agreement with previous mass determinations found via photometric fitting techniques, supporting the accuracy and validity of photometric mass determinations in short period CVs.

قيم البحث

اقرأ أيضاً

124 - Nad`ege Meunier 2021
Stellar activity due to different processes (magnetic activity, photospheric flows) affects the measurement of radial velocities (RV). Radial velocities have been widely used to detect exoplanets, although the stellar signal significantly impacts the detection and characterisation performance, especially for low mass planets. On the other hand, RV time series are also very rich in information on stellar processes. In this lecture, I review the context of RV observations, describe how radial velocities are measured, and the properties of typical observations. I present the challenges represented by stellar activity for exoplanet studies, and describe the processes at play. Finally, I review the approaches which have been developed, including observations and simulations, as well as solar and stellar comparisons.
A periodic variation in the pulse timings of the pulsating hot subdwarf B star CS 1246 was recently discovered via the O-C diagram and suggests the presence of a binary companion with an orbital period of two weeks. Fits to this phase variation, when interpreted as orbital reflex motion, imply CS 1246 orbits a barycenter 11 light-seconds away with a velocity of 16.6 km/s. Using the Goodman spectrograph on the SOAR telescope, we decided to confirm this hypothesis by obtaining radial velocity measurements of the system over several months. Our spectra reveal a velocity variation with amplitude, period, and phase in accordance with the O-C diagram predictions. This corroboration demonstrates that the rapid pulsations of hot subdwarf B stars can be adequate clocks for the discovery of binary companions via the pulse timing method.
We report on the current status of the radial velocity monitoring of nearby OB stars to look for binaries with small mass ratios. The combined data of radial velocities using the domestic 1-2 m-class telescopes seems to confirm the variations of radi al velocities in a few weeks for four out of ten target single-lined spectroscopic binaries. More data are needed to estimate the exact periods and mass distributions.
270 - L. Prato , G. N. Mace , E. L. Rice 2015
We present paper six of the NIRSPEC Brown Dwarf Spectroscopic Survey, an analysis of multi-epoch, high-resolution (R~20,000) spectra of 25 field dwarf systems (3 late-type M dwarfs, 16 L dwarfs, and 6 T dwarfs) taken with the NIRSPEC infrared spectro graph at the W. M. Keck Observatory. With a radial velocity precision of ~2 km/s, we are sensitive to brown dwarf companions in orbits with periods of a few years or less given a mass ratio of 0.5 or greater. We do not detect any spectroscopic binary brown dwarfs in the sample. Given our target properties, and the frequency and cadence of observations, we use a Monte Carlo simulation to determine the detection probability of our sample. Even with a null detection result, our 1 sigma upper limit for very low mass binary frequency is 18%. Our targets included 7 known, wide brown dwarf binary systems. No significant radial velocity variability was measured in our multi-epoch observations of these systems, even for those pairs for which our data spanned a significant fraction of the orbital period. Specialized techniques are required to reach the high precisions sensitive to motion in orbits of very low-mass systems. For eight objects, including six T dwarfs, we present the first published high-resolution spectra, many with high signal to noise, that will provide valuable comparison data for models of brown dwarf atmospheres.
Heartbeat stars (HB stars) are a class of eccentric binary stars with close periastron passages. The characteristic photometric HB signal evident in their light curves is produced by a combination of tidal distortion, heating, and Doppler boosting ne ar orbital periastron. Many HB stars continue to oscillate after periastron and along the entire orbit, indicative of the tidal excitation of oscillation modes within one or both stars. These systems are among the most eccentric binaries known, and they constitute astrophysical laboratories for the study of tidal effects. We have undertaken a radial velocity (RV) monitoring campaign of Kepler HB stars in order to measure their orbits. We present our first results here, including a sample of 21 Kepler HB systems, where for 19 of them we obtained the Keplerian orbit and for 3 other systems we did not detect a statistically significant RV variability. Results presented here are based on 218 spectra obtained with the Keck/HIRES spectrograph during the 2015 Kepler observing season, and they have allowed us to obtain the largest sample of HB stars with orbits measured using a single instrument, which roughly doubles the number of HB stars with an RV measured orbit. The 19 systems measured here have orbital periods from 7 to 90 d and eccentricities from 0.2 to 0.9. We show that HB stars draw the upper envelope of the eccentricity - period distribution. Therefore, HB stars likely represent a population of stars currently undergoing high eccentricity migration via tidal orbital circularization, and they will allow for new tests of high eccentricity migration theories.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا