ﻻ يوجد ملخص باللغة العربية
We study corrections to the conformal hyperscaling relation in the conformal window of the large Nf QCD by using the ladder Schwinger-Dyson (SD) equation as a concrete dynamical model. From the analytical expression of the solution of the ladder SD equation, we identify the form of the leading mass correction to the hyperscaling relation. We find that the anomalous dimension, when identified through the hyperscaling relation neglecting these corrections, yields a value substantially lower than the one at the fixed point gamma_m^* for large mass region. We further study finite-volume effects on the hyperscaling relation, based on the ladder SD equation in a finite space-time with the periodic boundary condition. We find that the finite-volume corrections on the hyperscaling relation are negligible compared with the mass correction. The anomalous dimension, when identified through the finite-size hyperscaling relation neglecting the mass corrections as is often done in the lattice analyses, yields almost the same value as that in the case of the infinite space-time neglecting the mass correction, i.e., a substantially lower value than gamma_m^* for large mass. We also apply the finite-volume SD equation to the chiral-symmetry-breaking phase and find that when the theory is close to the critical point such that the dynamically generated mass is much smaller than the explicit breaking mass, the finite-size hyperscaling relation is still operative. We also suggest a concrete form of the modification of the finite-size hyperscaling relation by including the mass correction, which may be useful to analyze the lattice data.
Motivated by recent progress on many flavor QCD on a lattice, we investigate conformal/walking dynamics by using Schwinger-Dyson (SD) equation within an improved ladder approximation for two-loop running coupling. By numerically solving the SD equati
Any practical application of the Schwinger-Dyson equations to the study of $n$-point Greens functions of a field theory requires truncations, the best known being finite order perturbation theory. Strong coupling studies require a different approach.
In view of the properties of mesons in hot strongly interacting matter the properties of the solutions of the truncated Dyson-Schwinger equation for the quark propagator at finite temperatures within the rainbow-ladder approximation are analysed in s
We derive the Dyson-Schwinger equation of a link variable in SU(n) lattice gauge theory in minimal Landau gauge and confront it with Monte-Carlo data for the different terms. Preliminary results for the lattice analog of the Kugo-Ojima confinement criterion is also shown.
The gluon propagator plays a central role in determining the dynamics of QCD. In this work we demonstrate for BRST quantised QCD that the Dyson-Schwinger equation imposes significant analytic constraints on the structure of this propagator. In partic