ﻻ يوجد ملخص باللغة العربية
Any practical application of the Schwinger-Dyson equations to the study of $n$-point Greens functions of a field theory requires truncations, the best known being finite order perturbation theory. Strong coupling studies require a different approach. In the case of QED, gauge covariance is a powerful constraint. By using a spectral representation for the massive fermion propagator in QED, we are able to show that the constraints imposed by the Landau-Khalatnikov-Fradkin transformations are linear operations on the spectral densities. Here we formally define these group operations and show with a couple of examples how in practice they provide a straightforward way to test the gauge covariance of any viable truncation of the Schwinger-Dyson equation for the fermion 2-point function.
With the introduction of a spectral representation, the Schwinger-Dyson equation (SDE) for the fermion propagator is formulated in Minkowski space in QED. After imposing the on-shell renormalization conditions, analytic solutions for the fermion prop
In view of the properties of mesons in hot strongly interacting matter the properties of the solutions of the truncated Dyson-Schwinger equation for the quark propagator at finite temperatures within the rainbow-ladder approximation are analysed in s
We solve the Minkowski-space Schwinger-Dyson equation (SDE) for the fermion propagator in quantum electrodynamics (QED) with massive photons. Specifically, we work in the quenched approximation within the rainbow-ladder truncation. Loop-divergences a
We derive the gauge covariance requirement imposed on the QED fermion-photon three-point function within the framework of a spectral representation for fermion propagators. When satisfied, such requirement ensures solutions to the fermion propagator
We calculate the variation of the chiral condensate in medium with respect to the quark chemical potential and evaluate the pion-nucleon sigma term via the Hellmann-Feynman theorem. The variation of chiral condensate in medium are obtained by solving