ﻻ يوجد ملخص باللغة العربية
We have considered the paraxial vector erf-Gaussian beams with field distribution in the form of the error function that are shaped by the cone of plane waves with a fractional step of the azimuthal phase distribution modulated by the Gaussian envelope. We have revealed that the initial distributions of the transverse electric and transverse magnetic fields have the form far from standard ones but at the far diffraction field the field distributions recover nearly the symmetric form. We have also revealed that the half-charged vortices in one of the field components can propagates up to the Rayleigh length without essential structural transformations but then splits into an asymmetric net of singly charged vortices.
A unified description of the free-space cylindrical vector beams is presented, which is an integral transformation solution to the vector Helmholtz equation and the transversality condition. The amplitude 2-form of the angular spectrum involved in th
The electromagnetic field of optical vortices is in most cases derived from vector and scalar potentials using either a procedure based on the Lorenz or the Coulomb gauge. The former procedure has been typically used to derive paraxial solutions with
A generalized family of scalar structured Gaussian modes including helical-Ince--Gaussian (HIG) and Hermite--Laguerre--Gaussian (HLG) beams is presented with physical insight upon a hybrid topological evolution nature of multi-singularity vortex beam
We present a novel procedure to solve the Schrodinger equation, which in optics is the paraxial wave equation, with an initial multisingular vortex Gaussian beam. This initial condition has a number of singularities in a plane transversal to propagat
We study light-beam propagation in a nonlinear coupler with an asymmetric double-channel waveguide and derive various analytical forms of optical modes. The results show that the symmetry-preserving modes in a symmetric double-channel waveguide are d