ﻻ يوجد ملخص باللغة العربية
To investigate the missing compact star of Supernova 1987A, we analyzed both the cooling and the heating processes of a possible compact star based on the upper limit of observational X-ray luminosity. From the cooling process we found that a solid quark-cluster star, which has a stiffer equation of state than that of conventional liquid quark star, has a heat capacity much smaller than a neutron star. It can cool down quickly, which can naturally explain the non-detection of a point source (neutron star or quark star) in X-ray band. On the other hand, we consider the heating process from magnetospheric activity and possible accretion, and obtain some constraints to the parameters of a possible pulsar. We conclude that a solid quark-cluster star can be fine with the observational limit in a large and acceptable parameter space. A pulsar with a short period and a strong magnetic field (or with a long period and a weak field) would has luminosity higher than the luminosity limit if the optical depth is not large enough to hide the compact star. The constraints of the pulsar parameters can be tested if the central compact object in 1987A is discovered by advanced facilities in the future.
The detection of an unexpected $sim 2.5 M_{odot}$ component in the gravitational wave event GW190814 has puzzled the community of High-Energy astrophysicists, since in the absence of further information it is not clear whether this is the heaviest ne
There are strong indications that the process of conversion of a neutron star into a strange quark star proceeds as a strong deflagration implying that in a few milliseconds almost the whole star is converted. Starting from the three-dimensional hydr
The recent measurement of two solar mass pulsars has initiated an intense discussion on its impact on our understanding of the high-density matter in the cores of neutron stars. A task force meeting was held from October 7-10, 2013 at the Frankfurt I
Considering the finite IR behavior of quantum chromodynamics (QCD) running coupling constant in some experiments, we intend to investigate different models presenting running coupling with finite values in the IR region. Using analytic and background
Within the realms of the possibility of solid quark matter, we fitted the 500ks Chandra LETG/HRC data for RX J1856.5-3754 with a phenomenological spectral model, and found that electric conductivity of quark matter on the stellar surface is about > 1.2 x 10^{18} s^{-1}.