ترغب بنشر مسار تعليمي؟ اضغط هنا

The Stability of Steady-State Hot-Spot Patterns for a Reaction-Diffusion Model of Urban Crime

187   0   0.0 ( 0 )
 نشر من قبل Theodore Kolokolnikov
 تاريخ النشر 2012
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The existence and stability of localized patterns of criminal activity are studied for the reaction-diffusion model of urban crime that was introduced by Short et. al. [Math. Models. Meth. Appl. Sci., 18, Suppl. (2008), pp. 1249--1267]. Such patterns, characterized by the concentration of criminal activity in localized spatial regions, are referred to as hot-spot patterns and they occur in a parameter regime far from the Turing point associated with the bifurcation of spatially uniform solutions. Singular perturbation techniques are used to construct steady-state hot-spot patterns in one and two-dimensional spatial domains, and new types of nonlocal eigenvalue problems are derived that determine the stability of these hot-spot patterns to ${mathcal O}(1)$ time-scale instabilities. From an analysis of these nonlocal eigenvalue problems, a critical threshold $K_c$ is determined such that a pattern consisting of $K$ hot-spots is unstable to a competition instability if $K>K_c$. This instability, due to a positive real eigenvalue, triggers the collapse of some of the hot-spots in the pattern. Furthermore, in contrast to the well-known stability results for spike patterns of the Gierer-Meinhardt reaction-diffusion model, it is shown for the crime model that there is only a relatively narrow parameter range where oscillatory instabilities in the hot-spot amplitudes occur. Such an instability, due to a Hopf bifurcation, is studied explicitly for a single hot-spot in the shadow system limit, for which the diffusivity of criminals is asymptotically large. Finally, the parameter regime where localized hot-spots occur is compared with the parameter regime, studied in previous works, where Turing instabilities from a spatially uniform steady-state occur.



قيم البحث

اقرأ أيضاً

186 - Daniel Gomez 2019
We consider a bulk-membrane-coupled partial differential equation in which a single diffusion equation posed within the unit ball is coupled to a two-component reaction diffusion equation posed on the bounding unit sphere through a linear Robin bound ary condition. Specifically, within the bulk we consider a process of linear diffusion with point-source generation for a bulk-bound activator. On the bounding surface we consider the classical two-component Brusselator model where the feed term is replaced by the restriction of the bulk-bound activator to the membrane. By considering the singularly perturbed limit of a small diffusivity ratio between the membrane-bound activator and inhibitor species, we use formal asymptotic expansions to construct strongly localized quasi-equilibrium spot solutions and study their linear stability. Our analysis reveals that bulk-membrane-coupling can restrict the existence of localized spot solutions through a recirculation mechanism. In addition we derive stability thresholds that illustrate the effect of coupling on both competition and splitting instabilities. Finally, we use higher-order matched asymptotic expansions to derive a system of differential algebraic equations that describe the slow motion of spots. The potential for new coupling induced dynamical behaviour is illustrated by considering examples of one-, two-, and three-spot solutions.
Reaction diffusion systems with Turing instability and mass conservation are studied. In such systems, abrupt decays of stripes follow quasi-stationary states in sequence. At steady state, the distance between stripes is much longer than that estimat ed by linear stability analysis at a homogeneous state given by alternative stability conditions. We show that there exist systems in which a one-stripe pattern is solely steady state for an arbitrary size of the systems. The applicability to cell biology is discussed.
Certain two-component reaction-diffusion systems on a finite interval are known to possess mesa (box-like) steadystate patterns in the singularly perturbed limit of small diffusivity for one of the two solution components. As the diffusivity D of the second component is decreased below some critical value Dc, with Dc = O(1), the existence of a steady-state mesa pattern is lost, triggering the onset of a mesa self-replication event that ultimately leads to the creation of additional mesas. The initiation of this phenomena is studied in detail for a particular scaling limit of the Brusselator model. Near the existence threshold Dc of a single steady-state mesa, it is shown that an internal layer forms in the center of the mesa. The structure of the solution within this internal layer is shown to be governed by a certain core problem, comprised of a single non-autonomous second-order ODE. By analyzing this core problem using rigorous and formal asymptotic methods, and by using the Singular Limit Eigenvalue Problem (SLEP) method to asymptotically calculate small eigenvalues, an analytical verification of the conditions of Nishiura and Ueyema [Physica D, 130, No. 1, (1999), pp. 73-104], believed to be responsible for self-replication, is given. These conditions include: (1) The existence of a saddle-node threshold at which the steady-state mesa pattern disappears; (2) the dimple-shaped eigenfunction at the threshold, believed to be responsible for the initiation of the replication process; and (3) the stability of the mesa pattern above the existence threshold. Finally, we show that the core problem is universal in the sense that it pertains to a class of reaction-diffusion systems, including the Gierer-Meinhardt model with saturation, where mesa self-replication also occurs.
Realistic examples of reaction-diffusion phenomena governing spatial and spatiotemporal pattern formation are rarely isolated systems, either chemically or thermodynamically. However, even formulations of `open reaction-diffusion systems often neglec t the role of domain boundaries. Most idealizations of closed reaction-diffusion systems employ no-flux boundary conditions, and often patterns will form up to, or along, these boundaries. Motivated by boundaries of patterning fields related to the emergence of spatial form in embryonic development, we propose a set of mixed boundary conditions for a two-species reaction-diffusion system which forms inhomogeneous solutions away from the boundary of the domain for a variety of different reaction kinetics, with a prescribed uniform state near the boundary. We show that these boundary conditions can be derived from a larger heterogeneous field, indicating that these conditions can arise naturally if cell signalling or other properties of the medium vary in space. We explain the basic mechanisms behind this pattern localization, and demonstrate that it can capture a large range of localized patterning in one, two, and three dimensions, and that this framework can be applied to systems involving more than two species. Furthermore, the boundary conditions proposed lead to more symmetrical patterns on the interior of the domain, and plausibly capture more realistic boundaries in developmental systems. Finally, we show that these isolated patterns are more robust to fluctuations in initial conditions, and that they allow intriguing possibilities of pattern selection via geometry, distinct from known selection mechanisms.
Localized spot patterns, where one or more solution components concentrates at certain points in the domain, are a common class of localized pattern for reaction-diffusion systems, and they arise in a wide range of modeling scenarios. In an arbitrary bounded 3-D domain, the existence, linear stability, and slow dynamics of localized multi-spot patterns is analyzed for the well-known singularly perturbed Gierer-Meinhardt (GM) activator-inhibitor system in the limit of a small activator diffusivity $varepsilon^2ll 1$. Our main focus is to classify the different types of multi-spot patterns, and predict their linear stability properties, for different asymptotic ranges of the inhibitor diffusivity $D$. For the range $D={mathcal O}(varepsilon^{-1})gg 1$, although both symmetric and asymmetric quasi-equilibrium spot patterns can be constructed, the asymmetric patterns are shown to be always unstable. On this range of $D$, it is shown that symmetric spot patterns can undergo either competition instabilities or a Hopf bifurcation, leading to spot annihilation or temporal spot amplitude oscillations, respectively. For $D={mathcal O}(1)$, only symmetric spot quasi-equilibria exist and they are linearly stable on ${mathcal O}(1)$ time intervals. On this range, it is shown that the spot locations evolve slowly on an ${mathcal O}(varepsilon^{-3})$ time scale towards their equilibrium locations according to an ODE gradient flow, which is determined by a discrete energy involving the reduced-wave Greens function. The central role of the far-field behavior of a certain core problem, which characterizes the profile of a localized spot, for the construction of quasi-equilibria in the $D={mathcal O}(1)$ and $D={mathcal O}(varepsilon^{-1})$ regimes, and in establishing some of their linear stability properties, is emphasized.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا