ترغب بنشر مسار تعليمي؟ اضغط هنا

The Properties of the 500 K Dwarf UGPS J072227.51-054031.2, and a Study of the Far-Red Flux of Cold Brown Dwarfs

51   0   0.0 ( 0 )
 نشر من قبل Sandy Leggett
 تاريخ النشر 2012
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We present i and z photometry for 25 T dwarfs and one L dwarf. Combined with published photometry, the data show that the i - z, z - Y and z - J colors of T dwarfs are very red, and continue to increase through to the late-type T dwarfs, with a hint of a saturation for the latest types with T_eff ~ 600 K. We present new 0.7-1.0 um and 2.8-4.2 um spectra for the very late-type T dwarf UGPS J072227.51-054031.2, as well as improved astrometry for this dwarf. Examination of the spectral energy distribution using the new and published data, with Saumon & Marley models, shows that the dwarf has T_eff = 505 +/- 10 K, a mass of 3-11 M_Jupiter and an age between 60 Myr and 1 Gyr. This young age is consistent with the thin disk kinematics of the dwarf. The mass range overlaps with that usually considered to be planetary, despite this being an unbound object discovered in the field near the Sun. This apparently young rapid rotator is also undergoing vigorous atmospheric mixing, as determined by the IRAC and WISE-2 4.5 um photometry and the Saumon & Marley models. The optical spectrum for this 500 K object shows clearly detected lines of the neutral alkalis Cs and Rb, which are emitted from deep atmospheric layers with temperatures of 900-1200 K.

قيم البحث

اقرأ أيضاً

We present {lambda}/{Delta}{lambda} ~ 6000 near-infrared spectroscopy of the nearby T9 dwarf, UGPS J072227.51-054031.2, obtained during the commissioning of the Folded-Port Infrared Echellette Spectrograph on the Baade Magellan telescope at Las Campa nas Observatory. The spectrum is marked by significant absorption from H2O, CH4 and H2. We also identify NH3 absorption features by comparing the spectrum to recently published line lists. The spectrum is fit with BT-Settl models, indicating Teff ~ 500-600 K and log g ~ 4.3-5.0. This corresponds to a mass of ~ 10-30 MJup and an age of 1-5 Gyr, however there are large discrepancies between the model and observed spectrum. The radial and rotational velocities of the brown dwarf are measured as 46.9 pm 2.5 and 40 pm 10 km/s, respectively, reflecting a thin disk Galactic orbit and fast rotation similar to other T dwarfs, suggesting a young, possibly planetary-mass brown dwarf.
Mid-infrared data, including Spitzer warm-IRAC [3.6] and [4.5] photometry, is critical for understanding the cold population of brown dwarfs now being found, objects which have more in common with planets than stars. As effective temperature (T_eff) drops from 800 K to 400 K, the fraction of flux emitted beyond 3 microns increases rapidly, from about 40% to >75%. This rapid increase makes a color like H-[4.5] a very sensitive temperature indicator, and it can be combined with a gravity- and metallicity-sensitive color like H-K to constrain all three of these fundamental properties, which in turn gives us mass and age for these slowly cooling objects. Determination of mid-infrared color trends also allows better exploitation of the WISE mission by the community. We use new Spitzer Cycle 6 IRAC photometry, together with published data, to present trends of color with type for L0 to T10 dwarfs. We also use the atmospheric and evolutionary models of Saumon & Marley to investigate the masses and ages of 13 very late-type T dwarfs, which have H-[4.5] > 3.2 and T_eff ~ 500 K to 750 K.
54 - H. Bouy , J. Girard , E.L. Martin 2010
With a spectral type of T10, UGPS J072227.51-054031.2 is one of the coolest objects known to date in the solar neighborhood. Multiple systems are relatively common among early and mid-T dwarfs. We search for faint and close companions around UGPSJ072 227.51-054031.2. We have obtained high spatial resolution images in the H and Ks bands using adaptive optics at the Very Large Telescope. With a Strehl ratio in the range 10-15%, the final images allow us to rule out the presence of a companion brighter than H<19.4mag at separation larger than 50mas, and H<21.4mag at separation larger than 0.1.
With the discovery of Y dwarfs by the WISE mission, the population of field brown dwarfs now extends to objects with temperatures comparable to those of Solar System planets. To investigate the atmospheres of these newly identified brown dwarfs, we h ave conducted a pilot study monitoring an initial sample of three late T-dwarfs (T6.5, T8 and T8.5) and one Y-dwarf (Y0) for infrared photometric variability at multiple epochs. With J-band imaging, each target was observed for a period of 1.0h to 4.5h per epoch, which covers a significant fraction of the expected rotational period. These measurements represent the first photometric monitoring for these targets. For three of the four targets (2M1047, Ross 458C and WISE0458), multi-epoch monitoring was performed, with the time span between epochs ranging from a few hours to ~2 years. During the first epoch, the T8.5 target WISE0458 exhibited variations with a remarkable min-to-max amplitude of 13%, while the second epoch light curve taken ~2 years later did not note any variability to a 3% upper limit. With an effective temperature of ~600 K, WISE0458 is the coldest variable brown dwarf published to-date, and combined with its high and variable amplitude makes it a fascinating target for detailed follow-up. The three remaining targets showed no significant variations, with a photometric precision between 0.8% and 20.0%, depending on the target brightness. Combining the new results with previous multi-epoch observations of brown dwarfs with spectral types of T5 or later, the currently identified variables have locations on the colour-colour diagram better matched by theoretical models incorporating cloud opacities rather than cloud-free atmospheres. This preliminary result requires further study to determine if there is a definitive link between variability among late-T dwarfs and their location on the colour-colour diagram.
We present the discovery of three late type (>T4) brown dwarfs, including a probable Y dwarf, in the WFC3 Infrared Spectroscopic Parallels (WISP) Survey. We use the G141 grism spectra to determine the spectral types of the dwarfs and derive distance estimates based on a comparison with nearby T dwarfs with known parallaxes. These are the most distant spectroscopically confirmed T/Y dwarfs, with the farthest at an estimated distance of ~400 pc. We compare the number of cold dwarfs found in the WISP survey with simulations of the brown dwarf mass function. The number found is generally consistent with an initial stellar mass function dN/dM propto M^{-alpha} with alpha = 0.0--0.5, although the identification of a Y dwarf is somewhat surprising and may be indicative of either a flatter absolute magnitude/spectral type relation than previously reported or an upturn in the number of very late type brown dwarfs in the observed volume.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا