ترغب بنشر مسار تعليمي؟ اضغط هنا

Spitzer Mid-Infrared Photometry of 500 - 750 K Brown Dwarfs

67   0   0.0 ( 0 )
 نشر من قبل Sandy Leggett
 تاريخ النشر 2010
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Mid-infrared data, including Spitzer warm-IRAC [3.6] and [4.5] photometry, is critical for understanding the cold population of brown dwarfs now being found, objects which have more in common with planets than stars. As effective temperature (T_eff) drops from 800 K to 400 K, the fraction of flux emitted beyond 3 microns increases rapidly, from about 40% to >75%. This rapid increase makes a color like H-[4.5] a very sensitive temperature indicator, and it can be combined with a gravity- and metallicity-sensitive color like H-K to constrain all three of these fundamental properties, which in turn gives us mass and age for these slowly cooling objects. Determination of mid-infrared color trends also allows better exploitation of the WISE mission by the community. We use new Spitzer Cycle 6 IRAC photometry, together with published data, to present trends of color with type for L0 to T10 dwarfs. We also use the atmospheric and evolutionary models of Saumon & Marley to investigate the masses and ages of 13 very late-type T dwarfs, which have H-[4.5] > 3.2 and T_eff ~ 500 K to 750 K.

قيم البحث

اقرأ أيضاً

We present Spitzer 3.6 and 4.5 $mu$m photometry and positions for a sample of 1510 brown dwarf candidates identified by the WISE all-sky survey. Of these, 166 have been spectroscopically classified as objects with spectral types M(1), L(7), T(146), a nd Y(12); Sixteen other objects are non-(sub)stellar in nature. The remainder are most likely distant L and T dwarfs lacking spectroscopic verification, other Y dwarf candidates still awaiting follow-up, and assorted other objects whose Spitzer photometry reveals them to be background sources. We present a catalog of Spitzer photometry for all astrophysical sources identified in these fields and use this catalog to identify 7 fainter (4.5 $mu$m $sim$ 17.0 mag) brown dwarf candidates, which are possibly wide-field companions to the original WISE sources. To test this hypothesis, we use a sample of 919 Spitzer observations around WISE-selected high-redshift hyper-luminous infrared galaxy (HyLIRG) candidates. For this control sample we find another 6 brown dwarf candidates, suggesting that the 7 companion candidates are not physically associated. In fact, only one of these 7 Spitzer brown dwarf candidates has a photometric distance estimate consistent with being a companion to the WISE brown dwarf candidate. Other than this there is no evidence for any widely separated ($>$ 20 AU) ultra-cool binaries. As an adjunct to this paper, we make available a source catalog of $sim$ 7.33 $times 10^5$ objects detected in all of these Spitzer follow-up fields for use by the astronomical community. The complete catalog includes the Spitzer 3.6 and 4.5 $mu$m photometry, along with positionally matched $B$ and $R$ photometry from USNO-B; $J$, $H$, and $K_s$ photometry from 2MASS; and $W1$, $W2$, $W3$, and $W4$ photometry from the WISE all-sky catalog.
93 - L. M. Rebull 2009
We report on the properties of pre-main-sequence objects in the Taurus molecular clouds as observed in 7 mid- and far-infrared bands with the Spitzer Space Telescope. There are 215 previously-identified members of the Taurus star-forming region in ou r ~44 square degree map; these members exhibit a range of Spitzer colors that we take to define young stars still surrounded by circumstellar dust (noting that ~20% of the bonafide Taurus members exhibit no detectable dust excesses). We looked for new objects in the survey field with similar Spitzer properties, aided by extensive optical, X-ray, and ultraviolet imaging, and found 148 candidate new members of Taurus. We have obtained follow-up spectroscopy for about half the candidate sample, thus far confirming 34 new members, 3 probable new members, and 10 possible new members, an increase of 15-20% in Taurus members. Of the objects for which we have spectroscopy, 7 are now confirmed extragalactic objects, and one is a background Be star. The remaining 93 candidate objects await additional analysis and/or data to be confirmed or rejected as Taurus members. Most of the new members are Class II M stars and are located along the same cloud filaments as the previously-identified Taurus members. Among non-members with Spitzer colors similar to young, dusty stars are evolved Be stars, planetary nebulae, carbon stars, galaxies, and AGN.
We have combined new I, J, H, and Ks imaging of portions of the Chamaeleon II, Lupus I, and Ophiuchus star-forming clouds with 3.6 to 24 micron imaging from the Spitzer Legacy Program, From Molecular Clouds to Planet Forming Disks, to identify a samp le of 19 young stars, brown dwarfs and sub-brown dwarfs showing mid-infrared excess emission. The resulting sample includes sources with luminosities of 0.5>log(L/Lsun)>-3.1. Six of the more luminous sources in our sample have been previously identified by other surveys for young stars and brown dwarfs. Five of the sources in our sample have nominal masses at or below the deuterium burning limit (~12 M_J). Over three decades in luminosity, our sources have an approximately constant ratio of excess to stellar luminosity. We compare our observed SEDs to theoretical models of a central source with a passive irradiated circumstellar disk and test the effects of disk inclination, disk flaring, and the size of the inner disk hole on the strength/shape of the excess. The observed SEDs of all but one of our sources are well fit by models of flared and/or flat disks.
73 - D. Stern 2006
We discuss color selection of rare objects in a wide-field, multiband survey spanning from the optical to the mid-infrared. Simple color criteria simultaneously identify and distinguish two of the most sought after astrophysical sources: the coolest brown dwarfs and the most distant quasars. We present spectroscopically-confirmed examples of each class identified in the IRAC Shallow Survey of the Bootes field of the NOAO Deep Wide-Field Survey. ISS J142950.9+333012 is a T4.5 brown dwarf at a distance of approximately 42 pc, and ISS J142738.5+331242 is a radio-loud quasar at redshift z=6.12. Our selection criteria identify a total of four candidates over 8 square degrees of the Bootes field. The other two candidates are both confirmed 5.5<z<6 quasars, previously reported by Cool et al. (2006). We discuss the implications of these discoveries and conclude that there are excellent prospects for extending such searches to cooler brown dwarfs and higher redshift quasars.
71 - Y.-H. Chu 2010
IR excesses of white dwarfs (WDs) can be used to diagnose the presence of low-mass companions, planets, and circumstellar dust. Using different combinations of wavelengths and WD temperatures, circumstellar dust at different radial distances can be s urveyed. The Spitzer Space Telescope has been used to search for IR excesses of white dwarfs. Two types of circumstellar dust disks have been found: (1) small disks around cool WDs with T_eff < 20,000 K, and (1) large disks around hot WDs with T_eff > 100,000 K. The small dust disks are within the Roche limit, and are commonly accepted to have originated from tidally crushed asteroids. The large dust disks, at tens of AU from the central WDs, have been suggested to be produced by increased collisions among Kuiper Belt-like objects. In this paper, we discuss Spitzer IRAC surveys of small dust disks around cool WDs, a MIPS survey of large dust disks around hot WDs, and an archival Spitzer survey of IR excesses of WDs.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا