ترغب بنشر مسار تعليمي؟ اضغط هنا

The Quasi-Biennial Periodicity (QBP) in velocity and intensity helioseismic observations

107   0   0.0 ( 0 )
 نشر من قبل Rosaria Simoniello
 تاريخ النشر 2012
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We looked for signatures of Quasi-Biennial Periodicity (QBP) over different phases of solar cycle by means of acoustic modes of oscillation. Low-degree p-mode frequencies are shown to be sensitive to changes in magnetic activity due to the global dynamo. Recently have been reported evidences in favor of two-year variations in p-mode frequencies. Long high-quality helioseismic data are provided by BiSON (Birmingham Solar Oscillation Network), GONG (Global Oscillation Network Group), GOLF (Global Oscillation at Low Frequency) and VIRGO (Variability of Solar IRradiance and Gravity Oscillation) instruments. We determined the solar cycle changes in p-mode frequencies for spherical degree l=0, 1, 2 with their azimuthal components in the frequency range 2.5 mHz < nu < 3.5 mHz. We found signatures of QBP at all levels of solar activity in the modes more sensitive to higher latitudes. The signal strength increases with latitude and the equatorial component seems also to be modulated by the 11-year envelope. The persistent nature of the seismic QBP is not observed in the surface activity indices, where mid-term variations are found only time to time and mainly over periods of high activity. This feature together with the latitudinal dependence provides more evidences in favor of a mechanism almost independent and different from the one that brings up to the surface the active regions. Therefore, these findings can be used to provide more constraints on dynamo models that consider a further cyclic component on top of the 11-year cycle.

قيم البحث

اقرأ أيضاً

Quasi-biennial oscillation (QBO) of solar magnetic activities is intrinsic to dynamo mechanism, but still far from fully understood. In this work, the phase and amplitude asymmetry of solar QBO of Halpha flare activity in the northern and southern he mispheres is studied by the ensemble empirical mode decomposition, the cross-correlation analysis, and the wavelet transform technique. The following results are found: (1) solar QBO of Halpha flare index in the two hemispheres has a complicated phase relationship, but does not show any systematic regularity; (2) the solar cycle mode of solar Halpha flare index in the northern hemisphere generally leads that in the southern one by 9 months for the time interval from 1966 to 2014. The possible origin of these results is discussed.
73 - L. H. Deng , Y. Fei , H. Deng 2020
Quasi-biennial oscillations (QBOs) are considered as a fundamental mode of solar magnetic activity at low latitudes ($leq50^circ$). However, the evolutionary aspect and the hemispheric distribution of solar QBOs at high latitudes ($geq60^circ$) are r arely studied. Here, a relatively novel time-frequency analysis technique, named the synchrosqueezed wavelet transform, is applied to extract the main components of the polar faculae in the northern and southern hemispheres for the time interval from August 1951 to December 1998. It is found as the following: (1) Apart from the 22-year Hale cycle, the 17-year extended activity cycle, and the 11-year Schwabe cycle, the QBOs have been estimated as a prominent timescale of solar magnetic activity at high latitudes; (2) the QBOs of the polar faculae are coherent in the two hemispheres, but the temporal (phase) and the spatial (amplitude) variations of solar QBOs occur unevenly on both hemispheres; and (3) for the 11-year period mode, the northern hemisphere begins three months earlier than that in the southern one. Moreover, the spatial and temporal distributions of the hemispheric QBOs differ from those of the 11-year Schwabe cycle mode in the two hemispheres. Our findings could be helpful to improve our knowledge on the physical origin of the spatial distribution of solar QBOs at high latitudes, and could also provide more constraints on solar dynamo models introduced to characterize the different components of the solar magnetic activity cycle.
Quasi-biennial oscillations (QBO) are frequently observed in the solar activity indices. However, no clear physical mechanism for the observed variations has been suggested so far. Here we study the stability of magnetic Rossby waves in the solar tac hocline using the shallow water magnetohydrodynamic approximation. Our analysis shows that the combination of typical differential rotation and a toroidal magnetic field with a strength > 10^5 G triggers the instability of the m=1 magnetic Rossby wave harmonic with a period of 2 years. This harmonic is antisymmetric with respect to the equator and its period (and growth rate) depends on the differential rotation parameters and the magnetic field strength. The oscillations may cause a periodic magnetic flux emergence at the solar surface and consequently may lead to the observed QBO in the solar activity features. The period of QBO may change throughout the cycle, and from cycle to cycle, due to variations of the mean magnetic field and differential rotation in the tachocline.
The Solar Dynamics Observatory/Helioseismic and Magnetic Imager (SDO/HMI) filtergrams, taken at six wavelengths around the Fe I 6173.3 {AA} line, contain information about the line-of-sight velocity over a range of heights in the solar atmosphere. Mu lti-height velocity inferences from these observations can be exploited to study wave motions and energy transport in the atmosphere. Using realistic convection simulation datasets provided by the STAGGER and MURaM codes, we generate synthetic filtergrams and explore several methods for estimating Dopplergrams. We investigate at which height each synthetic Dopplergram correlates most strongly with the vertical velocity in the model atmospheres. On the basis of the investigation, we propose two Dopplergrams other than the standard HMI-algorithm Dopplergram produced from HMI filtergrams: a line-center Dopplergram and an average-wing Dopplergram. These two Dopplergrams correlate most strongly with vertical velocities at the heights of 30 - 40 km above (line-center) and 30 - 40 km below (average-wing) the effective height of the HMI-algorithm Dopplergram. Therefore, we can obtain velocity information from two layers separated by about a half of a scale height in the atmosphere, at best. The phase shifts between these multi-height Dopplergrams from observational data as well as those from the simulated data are also consistent with the height-difference estimates in the frequency range above the photospheric acoustic cutoff frequency.
We report observations of white-light ejecta in the low corona, for two X-class flares on the 2013 May 13, using data from the Helioseismic and Magnetic Imager (HMI) of the Solar Dynamics Observatory. At least two distinct kinds of sources appeared ( chromospheric and coronal), in the early and later phases of flare development, in addition to the white-light footpoint sources commonly observed in the lower atmosphere. The gradual emissions have a clear identification with the classical loop-prominence system, but are brighter than expected and possibly seen here in the continuum rather than line emission. We find the HMI flux exceeds the radio/X-ray interpolation of the bremsstrahlung produced in the flare soft X-ray sources by at least one order of magnitude. This implies the participation of cooler sources that can produce free-bound continua and possibly line emission detectable by HMI. One of the early sources dynamically resembles coronal rain, appearing at a maximum apparent height and moving toward the photosphere at an apparent constant projected speed of 134 $pm$ 8 $mathrm{km s^{-1}}$. Not much literature exists on the detection of optical continuum sources above the limb of the Sun by non-coronagraphic instruments, and these observations have potential implications for our basic understanding of flare development, since visible observations can in principle provide high spatial and temporal resolution.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا