ترغب بنشر مسار تعليمي؟ اضغط هنا

Giant resistance change across the phase transition in spin crossover molecules

171   0   0.0 ( 0 )
 نشر من قبل Nadjib Baadji
 تاريخ النشر 2012
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The electronic origin of a large resistance change in nanoscale junctions incorporating spin crossover molecules is demonstrated theoretically by using a combination of density functional theory and the non-equilibrium Greens functions method for quantum transport. At the spin crossover phase transition there is a drastic change in the electronic gap between the frontier molecular orbitals. As a consequence, when the molecule is incorporated in a two terminal device, the current increases by up to four orders of magnitude in response to the spin change. This is equivalent to a magnetoresistance effect in excess of 3,000 %. Since the typical phase transition critical temperature for spin crossover compounds can be extended to well above room temperature, spin crossover molecules appear as the ideal candidate for implementing spin devices at the molecular level.



قيم البحث

اقرأ أيضاً

We experimentally investigate transport properties of a hybrid structure, which consists of a thin single crystal SnSe flake on a top of 5~$mu$m spaced Au leads. The structure initially is in highly-conductive state, while it can be switched to low-c onductive one at high currents due to the Joule heating of the sample, which should be identified as $alpha$-$Pnma$ -- $beta$-$Cmcm$ diffusionless martensitic phase transition in SnSe. For highly-conductive state, there is significant hysteresis in $dI/dV(V)$ curves at low biases, so the sample conductance depends on the sign of the applied bias change. This hysteretic behavior reflects slow relaxation due to additional polarization current in the ferroelectric SnSe phase, which we confirm by direct measurement of time-dependent relaxation curves. In contrast, we observe no noticeable relaxation or low-bias hysteresis for the quenched $beta$-$Cmcm$ low-conductive phase. Thus, ferroelectric behavior can be switched on or off in transport through hybrid SnSe structure by controllable $alpha$-$Pnma$ -- $beta$-$Cmcm$ phase transition. This result can also be important for nonvolatile memory development, e.g. phase change memory for neuromorphic computations or other applications in artificial intelligence and modern electronics.
We present a Monte Carlo study of the finite temperature properties of an extended Hubbard-Peierls model describing one dimensional $pi$-conjugated polymers. The model incorporates electron-phonon and hyperfine interaction and it is solved at the mea n field level for half filling. In particular we explore the model as a function of the strength of electron-electron and electron-phonon interactions. At low temperature the system presents a diamagnetic to antiferromagnetic transition as the electron-electron interaction strength increases. At the same time by increasing the electron-phonon coupling there is a transition from a homogeneous to a Peierls dimerized geometry. As expected such a Peierls dimerized phase disappears at finite temperature as a result of thermal vibrations. More intriguing is the interplay between the electron-phonon and the electron-electron interactions at finite temperature. In particular we demonstrate that for a certain region of the parameter space there is a spin-crossover, where the system transits from a low-spin to a high-spin state as the temperature increases. In close analogy to standard spin-crossover in divalent magnetic molecules such a transition is entropy driven. Finally we discuss the role played by the hyperfine interaction over the phase diagram.
The spin-crossover in organometallic molecules constitutes one of the most promising routes towards the realization of molecular spintronic devices. In this article, we explore the hybridization-induced spin-crossover in metal-organic complexes. We p ropose a minimal many-body model that captures the essence of the spin-state switching in a generic parameter space, thus providing insight into the underlying physics. Combining the model with density functional theory (DFT), we then study the spin-crossover in isomeric structures of Ni-porphyrin (Ni-TPP). We show that metal-ligand charge transfer plays a crucial role in the determination of the spin-state in Ni-TPP. Finally, we propose a spin-crossover mechanism based on mechanical strain, which does not require a switch between isomeric structures.
We investigate the electron transport properties of a model magnetic molecule formed by two magnetic centers whose exchange coupling can be altered with a longitudinal electric field. In general we find a negative differential conductance at low temp eratures originating from the different scattering amplitudes of the singlet and triplet states. More interestingly, when the molecule is strongly coupled to the leads and the potential drop at the magnetic centers is only weakly dependent on the magnetic configuration, we find that there is a critical voltage V_C at which the current becomes independent of the temperature. This corresponds to a peak in the low temperature current noise. In such limit we demonstrate that the quadratic current fluctuations are proportional to the product between the conductance fluctuations and the temperature.
We report the strong dependence of resistance on uniaxial strain in monolayer WSe2 at various temperatures, where the gauge factor can reach as large as 2400. The observation of strain-dependent resistance and giant gauge factor is attributed to the emergence of nonzero Berry curvature dipole. Upon increasing strain, Berry curvature dipole can generate net orbital magnetization, which would introduce additional magnetic scattering, decreasing the mobility and thus conductivity. Our work demonstrates the strain engineering of Berry curvature and thus the transport properties, making monolayer WSe2 potential for the application in the high-performance flexible and transparent electronics.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا