ترغب بنشر مسار تعليمي؟ اضغط هنا

Quantum-Enhanced Tunable Second-Order Optical Nonlinearity in Bilayer Graphene

166   0   0.0 ( 0 )
 نشر من قبل Sanfeng Wu
 تاريخ النشر 2012
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Second order optical nonlinear processes involve the coherent mixing of two electromagnetic waves to generate a new optical frequency, which plays a central role in a variety of applications, such as ultrafast laser systems, rectifiers, modulators, and optical imaging. However, progress is limited in the mid-infrared (MIR) region due to the lack of suitable nonlinear materials. It is desirable to develop a robust system with a strong, electrically tunable second order optical nonlinearity. Here we demonstrate theoretically that AB-stacked bilayer graphene (BLG) can exhibit a giant and tunable second order nonlinear susceptibility chi ^(2) once an in-plane electric field is applied. chi^(2) can be electrically tuned from 0 to ~ {10^5 pm/V}, three orders of magnitude larger than the widely used nonlinear crystal AgGaSe2. We show that the unusually large chi^(2) arises from two different quantum enhanced two-photon processes thanks to the unique electronic spectrum of BLG. The tunable electronic bandgap of BLG adds additional tunability on the resonance of chi^(2), which corresponds to a tunable wavelength ranging from ~2.6 {mu}m to ~3.1 {mu}m for the up-converted photon. Combined with the high electron mobility and optical transparency of the atomically thin BLG, our scheme suggests a new regime of nonlinear photonics based on BLG.



قيم البحث

اقرأ أيضاً

Symmetry breaking in a quantum system often leads to complex emergent behavior. In bilayer graphene (BLG), an electric field applied perpendicular to the basal plane breaks the inversion symmetry of the lattice, opening a band gap at the charge neutr ality point. In a quantizing magnetic field electron interactions can cause spontaneous symmetry breaking within the spin and valley degrees of freedom, resulting in quantum Hall states (QHS) with complex order. Here we report fractional quantum Hall states (FQHS) in bilayer graphene which show phase transitions that can be tuned by a transverse electric field. This result provides a model platform to study the role of symmetry breaking in emergent states with distinct topological order.
Van der Waals heterostructures obtained by artificially stacking two-dimensional crystals represent the frontier of material engineering, demonstrating properties superior to those of the starting materials. Fine control of the interlayer twist angle has opened new possibilities for tailoring the optoelectronic properties of these heterostructures. Twisted bilayer graphene with a strong interlayer coupling is a prototype of twisted heterostructure inheriting the intriguing electronic properties of graphene. Understanding the effects of the twist angle on its out-of-equilibrium optical properties is crucial for devising optoelectronic applications. With this aim, we here combine excitation-resolved hot photoluminescence with femtosecond transient absorption microscopy. The hot charge carrier distribution induced by photo-excitation results in peaked absorption bleaching and photo-induced absorption bands, both with pronounced twist angle dependence. Theoretical simulations of the electronic band structure and of the joint density of states enable to assign these bands to the blocking of interband transitions at the van Hove singularities and to photo-activated intersubband transitions. The tens of picoseconds relaxation dynamics of the observed bands is attributed to the angle-dependence of electron and phonon heat capacities of twisted bilayer graphene.
Intense efforts have been made in recent years to realize nonlinear optical interactions at the single-photon level. Much of this work has focused on achieving strong third-order nonlinearities, such as by using single atoms or other quantum emitters while the possibility of achieving strong second-order nonlinearities remains unexplored. Here, we describe a novel technique to realize such nonlinearities using graphene, exploiting the strong per-photon fields associated with tightly confined graphene plasmons in combination with spatially nonlocal nonlinear optical interactions. We show that in properly designed graphene nanostructures, these conditions enable extremely strong internal down-conversion between a single quantized plasmon and an entangled plasmon pair, or the reverse process of second harmonic generation. A separate issue is how such strong internal nonlinearities can be observed, given the nominally weak coupling between these plasmon resonances and free-space radiative fields. On one hand, by using the collective coupling to radiation of nanostructure arrays, we show that the internal nonlinearities can manifest themselves as efficient frequency conversion of radiative fields at extremely low input powers. On the other hand, the development of techniques to efficiently couple to single nanostructures would allow these nonlinear processes to occur at the level of single input photons.
Achieving efficient nonlinear optical frequency conversion in small volumes is key for future on-chip photonic devices that would provide a higher-speed alternative to modern electronics. However, the already intrinsically low conversion efficiency s everely limits miniaturization to nanoscale dimensions. Here we demonstrate that gradient-field effects can provide for an efficient, conventionally dipole-forbidden nonlinear response, offering a new approach for enhanced nonlinear optics in nanostructures. We show that a {em longitudinal} nonlinear source current can dominate the third-order optical nonlinearity of the free electron response in gold in the technologically important near-IR frequency range where the nonlinearities due to other mechanisms are particularly small. Using adiabatic nanofocusing to spatially confine the excitation fields, from measurements of the $2omega_1 - omega_2$ four-wave mixing response as a function of detuning $omega_1 - omega_2$, we find up to $10^{-5}$ conversion efficiency with a gradient field contribution to $chi^{(3)}_{mathrm{Au}}$ of up to $10^{-19}~mathrm{m}^2 / mathrm{V}^2$. The results are in good agreement with theory based on plasma hydrodynamics. Our results demonstrate an increase in nonlinear conversion efficiency with decreasing sample size that can offset and even overcompensate the volume decrease of conventional dipolar pathways. This will enable more efficient nonlinear optical devices and frequency converters and facilitate the extension of coherent multidimensional spectroscopies to the nanoscale.
The line shape of the double-resonant $2D$ Raman mode in bilayer graphene is often considered to be characteristic for a certain laser excitation energy. Here, in a joint experimental and theoretical study, we analyze the dependence of the double-res onant Raman scattering processes in bilayer graphene on the electronic broadening parameter $gamma$. We demonstrate that the ratio between symmetric and anti-symmetric scattering processes sensitively depends on the lifetime of the electronic states, explaining the experimentally observed variation of the complex $2D$-mode line shape.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا