ترغب بنشر مسار تعليمي؟ اضغط هنا

Tunable quantum interference in bilayer graphene in double-resonant Raman scattering

130   0   0.0 ( 0 )
 نشر من قبل Felix Herziger
 تاريخ النشر 2018
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The line shape of the double-resonant $2D$ Raman mode in bilayer graphene is often considered to be characteristic for a certain laser excitation energy. Here, in a joint experimental and theoretical study, we analyze the dependence of the double-resonant Raman scattering processes in bilayer graphene on the electronic broadening parameter $gamma$. We demonstrate that the ratio between symmetric and anti-symmetric scattering processes sensitively depends on the lifetime of the electronic states, explaining the experimentally observed variation of the complex $2D$-mode line shape.



قيم البحث

اقرأ أيضاً

We demonstrate gate-tunable resonant tunneling and negative differential resistance in the interlayer current-voltage characteristics of rotationally aligned double bilayer graphene heterostructures separated by hexagonal boron-nitride (hBN) dielectr ic. An analysis of the heterostructure band alignment using individual layer densities, along with experimentally determined layer chemical potentials indicates that the resonance occurs when the energy bands of the two bilayer graphene are aligned. We discuss the tunneling resistance dependence on the interlayer hBN thickness, as well as the resonance width dependence on mobility and rotational alignment.
The dispersion of phonons and the electronic structure of graphene systems can be obtained experimentally from the double-resonance (DR) Raman features by varying the excitation laser energy. In a previous resonance Raman investigation of graphene, t he electronic structure was analyzed in the framework of the Slonczewski-Weiss-McClure (SWM) model, considering the outer DR process. In this work we analyze the data considering the inner DR process, and obtain SWM parameters that are in better agreement with those obtained from other experimental techniques. This result possibly shows that there is still a fundamental open question concerning the double resonance process in graphene systems.
We report the first experimental study of the quantum interference correction to the conductivity of bilayer graphene. Low-field, positive magnetoconductivity due to the weak localisation effect is investigated at different carrier densities, includi ng those around the electroneutrality region. Unlike conventional 2D systems, weak localisation in bilayer graphene is affected by elastic scattering processes such as intervalley scattering. Analysis of the dephasing determined from the magnetoconductivity is complemented by a study of the field- and density-dependent fluctuations of the conductance. Good agreement in the value of the coherence length is found between these two studies.
By computing the double-resonant Raman scattering cross-section completely from first principles and including electron-electron interaction at the $GW$ level, we unravel the dominant contributions for the double-resonant 2D-mode in bilayer graphene. We show that, in contrast to previous works, the so-called inner processes are dominant and that the 2D-mode lineshape is described by three dominant resonances around the $K$ point. We show that the splitting of the TO phonon branch in $Gamma-K$ direction, as large as 12 cm$^{-1}$ in $GW$ approximation, is of great importance for a thorough description of the 2D-mode lineshape. Finally, we present a method to extract the TO phonon splitting and the splitting of the electronic bands from experimental data.
The band structure of bilayer graphene is tunable by introducing a relative twist angle between the two layers, unlocking exotic phases, such as superconductor and Mott insulator, and providing a fertile ground for new physics. At intermediate twist angles around 10{deg}, highly degenerate electronic transitions hybridize to form excitonic states, a quite unusual phenomenon in a metallic system. We probe the bright exciton mode using resonant Raman scattering measurements to track the evolution of the intensity of the graphene Raman G peak, corresponding to the E2g phonon. By cryogenically cooling the sample, we are able to resolve both the incoming and outgoing resonance in the G peak intensity evolution as a function of excitation energy, a prominent manifestation of the bright exciton serving as the intermediate state in the Raman process. For a sample with twist angle 8.6{deg}, we report a weakly temperature dependent resonance broadening ${gamma}$ ${approx}$ 0.07 eV. In the limit of small inhomogeneous broadening, the observed ${gamma}$ places a lower bound for the bright exciton scattering lifetime at 10 fs in the presence of charges and excitons excited by the light pulse for Raman measurement, limited by the rapid exciton-exciton and exciton-charge scattering in graphene.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا