ﻻ يوجد ملخص باللغة العربية
We show that the support of a simple weight module over the Neveu-Schwarz algebra, which has an infinite-dimensional weight space, coincides with the weight lattice and that all non-trivial weight spaces of such module are infinite-dimensional. As a corollary we obtain that every simple weight module over the Neveu-Schwarz algebra, having a non-trivial finite-dimensional weight space, is a Harish-Chandra module (and hence is either a highest or lowest weight module, or else a module of the intermediate series). This result generalizes a theorem which was originally given on the Virasoro algebra.
In this paper, the tensor product of highest weight modules with intermediate series modules over the Neveu-Schwarz algebra is studied. The weight spaces of such tensor products are all infinitely dimensional if the highest weight module is nontrivia
Let ${mathcal W}_n$ be the Lie algebra of polynomial vector fields. We classify simple weight ${mathcal W}_n$-modules $M$ with finite weight multiplicities. We prove that every such nontrivial module $M$ is either a tensor module or the unique simple
In the present paper, using the technique of localization, we determine the center of the quantum Schr{o}dinger algebra $S_q$ and classify simple modules with finite-dimensional weight spaces over $S_q$, when $q$ is not a root of unity. It turns out
We construct a class of non-weight modules over the twisted $N=2$ superconformal algebra $T$. Let $mathfrak{h}=C L_0oplusC G_0$ be the Cartan subalgebra of $T$, and let $mathfrak{t}=C L_0$ be the Cartan subalgebra of even part $T_{bar 0}$. These modu
In this paper, we study weight representations over the Schr{o}dinger Lie algebra $mathfrak{s}_n$ for any positive integer $n$. It turns out that the algebra $mathfrak{s}_n$ can be realized by polynomial differential operators. Using this realization