ترغب بنشر مسار تعليمي؟ اضغط هنا

An Impact Crater in Palm Valley, Central Australia?

141   0   0.0 ( 0 )
 نشر من قبل Duane Hamacher
 تاريخ النشر 2012
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We explore the origin of a ~280 m wide, heavily eroded circular depression in Palm Valley, Northern Territory, Australia using gravity, morphological, and mineralogical data collected from a field survey in September 2009. From the analysis of the survey, we debate probable formation processes, namely erosion and impact, as no evidence of volcanism is found in the region or reported in the literature. We argue that the depression was not formed by erosion and consider an impact origin, although we acknowledge that diagnostics required to identify it as such (e.g. meteorite fragments, shatter cones, shocked quartz) are lacking, leaving the formation process uncertain. We encourage further discussion of the depressions origin and stress a need to develop recognition criteria that can help identify small, ancient impact craters. We also encourage systematic searches for impact craters in Central Australia as it is probable that many more remain to be discovered.

قيم البحث

اقرأ أيضاً

We performed numerical simulations of impact crater formation on Europa to infer the thickness and structure of its ice shell. The simulations were performed using iSALE to test both the conductive ice shell over ocean and the conductive lid over war m convective ice scenarios for a variety of conditions. The modeled crater depth-diameter is strongly dependent on thermal gradient and temperature of the warm convective ice. Our results indicate that both a fully conductive (thin) shell and a conductive-convective (thick) shell can reproduce the observed crater depth-diameter and morphologies. For the conductive ice shell over ocean, the best fit is an approximately 8 km thick conductive ice shell. Depending on the temperature (255 - 265 K) and therefore strength of warm convective ice, the thickness of the conductive ice lid is estimated at 5 - 7 km. If central features within the crater, such as pits and domes, form during crater collapse, our simulations are in better agreement with the fully conductive shell (thin shell). If central features form well after the impact, however, our simulations suggest a conductive-convective shell (thick shell) is more likely. Although our study does not provide firm conclusion regarding the thickness of Europas ice shell, our work indicates that Valhalla-class multiring basins on Europa may provide robust constraints on the thickness of Europas ice shell.
Crater count equilibrium occurs when new craters form at the same rate that old craters are erased, such that the total number of observable impacts remains constant. Despite substantial efforts to understand this process, there remain many unsolved problems. Here, we propose an analytical model that describes how a heavily cratered surface reaches a state of crater count equilibrium. The proposed model formulates three physical processes contributing to crater count equilibrium: cookie-cutting (simple, geometric overlap), ejecta-blanketing, and sandblasting (diffusive erosion). These three processes are modeled using a degradation parameter that describes the efficiency for a new crater to erase old craters. The flexibility of our newly developed model allows us to represent the processes that underlie crater count equilibrium problems. The results show that when the slope of the production function is steeper than that of the equilibrium state, the power law of the equilibrium slope is independent of that of the production function slope. We apply our model to the cratering conditions in the Sinus Medii region and at the Apollo 15 landing site on the Moon and demonstrate that a consistent degradation parameterization can successfully be determined based on the empirical results of these regions. Further developments of this model will enable us to better understand the surface evolution of airless bodies due to impact bombardment.
We investigate the patterns observed in ejecta curtain induced by hypervelocity impact (2-6 km/s) with a variety of the size and shape of target particles. We characterize the patterns by an angle, defined as the ratio of the characteristic length of the pattern obtained by Fourier transformation to the distance from the impact point. This angle is found to be almost the same as that obtained by the reanalysis of the patterns in the previous study at lower impact velocities (Kadono et al., 2015, Icarus 250, 215-221), which are consistent with lunar crater-ray systems. Assuming that the pattern is formed by mutual collision of particles with fluctuation velocity in excavation flow, we evaluate an angle at which the pattern growth stops and show that this angle is the same in the order of magnitude as the ratio of the fluctuation velocity and the radial velocity. This relation is confirmed in the results of experiments and numerical simulations. Finally, we discuss the dependence of the patterns on impact conditions. The experiments show no dependence of the angle on impact velocity. This indicates that the ratio between the fluctuation and radial velocity components in excavation flow does not depend on impact velocity. Moreover, the independences on particle size and particle shape suggest that the angle characterizing the structure of the patterns does not depend on cohesive force. Since cohesive forces should be related with elastic properties of particles, the structure does not depend on elastic properties, though inelastic collisions are important for the persistence and contrast of the patterns.
The discovery of a large putative impact crater buried beneath Hiawatha Glacier along the margin of the northwestern Greenland Ice Sheet has reinvigorated interest into the nature of large impacts into thick ice masses. This circular structure is rel atively shallow and exhibits a small central uplift, whereas a peak-ring morphology is expected. This discrepancy may be due to long-term and ongoing subglacial erosion but may also be explained by a relatively recent impact through the Greenland Ice Sheet, which is expected to alter the final crater morphology. Here we model crater formation using hydrocode simulations, varying pre-impact ice thickness and impactor composition over crystalline target rock. We find that an ice-sheet thickness of 1.5 or 2 km results in a crater morphology that is consistent with the present morphology of this structure. Further, an ice sheet that thick substantially inhibits ejection of rocky material, which might explain the absence of rocky ejecta in most existing Greenland deep ice cores if the impact occurred during the late Pleistocene. From the present morphology of the putative Hiawatha impact crater alone, we cannot distinguish between an older crater formed by a pre-Pleistocene impact into ice-free bedrock or a younger, Pleistocene impact into locally thick ice, but based on our modeling we conclude that latter scenario is possible.
In order to investigate the causes of different spectral slope in ccps, different grain-sizes of Ceres analogue mixtures were produced, heated to remove absorption of atmospheric water, and spectrally analyzed. First, the end-members which compose th e Ceres surface (using the antigorite as Mg-phyllosilicate, the NH4-montmorillonite as NH4-phyllosilicate, the dolomite as carbonate and the graphite as dark component), were mixed, obtaining mixtures with different relative abundance, and identifying the mixture with the reflectance spectrum most similar to the average Ceres spectrum. The mixtures were obtained with grain size of 0-25 {mu}m, 25-50 mic and 50-100 mic, were heated and spectrally analysed at T= 300 K and T=200 K (typical for surface Ceres temperature during VIR observations). The most similar Ceres analogue mixture is composed of dolomite (18%), graphite (27%), antigorite (32%) and NH4-montmorillonite (29%) and the results of this work suggest that this mixture is more similar to the Ceres youngest region than to the Ceres average, in particular for the negative slope of spectrum. Small variation in the composition and grain size of end-members need to be considered, in addition to the occurrence of a dark component dispersed in fine size. Furthermore, the positive spectral slope that characterizes the mean Ceres spectrum can be obtained by the application of some processes simulating the space weathering on Ceres (as micro-meteoritic impacts and solar wind irradiation), i.e. laser and ion irradiation. As conclusion, youngest ccps on Ceresare probably composed by fresher and weakly processed mixture with fine dark material intimately dispersed: as a result, the reflectance spectra of youngest material show a negative slope in the 1.2-1.9 mic range. The redder slope observed in the older ccps is probably the consequence of the space weathering effects on fresher material
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا