ترغب بنشر مسار تعليمي؟ اضغط هنا

The catalytic role of beta effect in barotropization processes

33   0   0.0 ( 0 )
 نشر من قبل Antoine Venaille
 تاريخ النشر 2012
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The vertical structure of freely evolving, continuously stratified, quasi-geostrophic flow is investigated. We predict the final state organization, and in particular its vertical structure, using statistical mechanics and these predictions are tested against numerical simulations. The key role played by conservation laws in each layer, including the fine-grained enstrophy, is discussed. In general, the conservation laws, and in particular that enstrophy is conserved layer-wise, prevent complete barotropization, i.e., the tendency to reach the gravest vertical mode. The peculiar role of the $beta$-effect, i.e. of the existence of planetary vorticity gradients, is discussed. In particular, it is shown that increasing $beta$ increases the tendency toward barotropization through turbulent stirring. The effectiveness of barotropisation may be partly parameterized using the Rhines scale $2pi E_{0}^{1/4}/beta^{1/2}$. As this parameter decreases (beta increases) then barotropization can progress further, because the beta term provides enstrophy to each layer.

قيم البحث

اقرأ أيضاً

We theoretically and numerically investigate the instabilities driven by diffusiophoretic flow, caused by a solutal concentration gradient along a reacting surface. The important control parameter is the Peclet number Pe, which quantifies the ratio o f the solutal advection rate to the diffusion rate. First, we study the diffusiophoretic flow on a catalytic plane in two dimensions. From a linear stability analysis, we obtain that for Pe larger than 8pi, mass transport by convection overtakes that by diffusion, and a symmetry-breaking mode arises, which is consistent with numerical results. For even larger Pe, non-linear terms become important. For Pe larger than 16pi, multiple concentration plumes are emitted from the catalytic plane, which eventually merges into a single larger one. When Pe is even larger, there are continuous emissions and merging events of the concentration plumes. This newly-found flow state reflects the non-linear saturation of the system. The critical Peclet number for the transition to this state depends on Schmidt number Sc. In the second part of the paper, we conduct three-dimensional simulations for spherical catalytic particles, and beyond a critical Peclet number again find continuous plume emission and plume merging, now leading to chaotic motion of the phoretic particle. Our results thus help to understand the experimentally observed chaotic motion of catalytic particles in the high Pe regime.
A major goal for reduced-order models of unsteady fluid flows is to uncover and exploit latent low-dimensional structure. Proper orthogonal decomposition (POD) provides an energy-optimal linear basis to represent the flow kinematics, but converges sl owly for advection-dominated flows and tends to overestimate the number of dynamically relevant variables. We show that nonlinear correlations in the temporal POD coefficients can be exploited to identify the underlying attractor, characterized by a minimal set of driving modes and a manifold equation for the remaining modes. By viewing these nonlinear correlations as an invariant manifold reduction, this least-order representation can be used to stabilize POD-Galerkin models or as a state space for data-driven model identification. In the latter case, we use sparse polynomial regression to learn a compact, interpretable dynamical system model from the time series of the active modal coefficients. We demonstrate this perspective on a quasiperiodic shear-driven cavity flow and show that the dynamics evolve on a torus generated by two independent Stuart-Landau oscillators. These results emphasize the importance of nonlinear dimensionality reduction to reveal underlying structure in complex flows.
207 - Kayo Ide , Stephen Wiggins 2014
We develop a framework to study the role of variability in transport across a streamline of a reference flow. Two complementary schemes are presented: a graphical approach for individual cases, and an analytical approach for general properties. The s patially nonlinear interaction of dynamic variability and the reference flow results in flux variability. The characteristic time-scale of the dynamic variability and the length-scale of the flux variability in a unit of flight-time govern the spatio-temporal interaction that leads to transport. The non-dimensional ratio of the two characteristic scales is shown to be a a critical parameter. The pseudo-lobe sequence along the reference streamline describes spatial coherency and temporal evolution of transport. For finite-time transport from an initial time up to the present, the characteristic length-scale of the flux variability regulates the width of the pseudo-lobes. The phase speed of pseudo-lobe propagation averages the reference flow and the flux variability. In contrast, for definite transport over a fixed time interval and spatial segment, the characteristic time-scale of the dynamic variability regulates the width of the pseudo-lobes. Generation of the pseudo-lobe sequence appears to be synchronous with the dynamic variability, although it propagates with the reference flow. In either case, the critical characteristic ratio is found to be one, corresponding to a resonance of the flux variability with the reference flow. Using a kinematic model, we demonstrate the framework for two types of transport in a blocked flow of the mid-latitude atmosphere: across the meandering jet axis and between the jet and recirculating cell.
We theoretically investigate the effect of random fluctuations on the motion of elongated microswimmers near hydrodynamic transport barriers in externally-driven fluid flows. Focusing on the two-dimensional hyperbolic flow, we consider the effects of translational and rotational diffusion as well as tumbling, i.e. sudden jumps in the swimmer orientation. Regardless of whether diffusion or tumbling are the primary source of fluctuations, we find that noise significantly increases the probability that a swimmer crosses one-way barriers in the flow, which block the swimmer from returning to its initial position. We employ an asymptotic method for calculating the probability density of noisy swimmer trajectories in a given fluid flow, which produces solutions to the time-dependent Fokker-Planck equation in the weak-noise limit. This procedure mirrors the semiclassical approximation in quantum mechanics and similarly involves calculating the least-action paths of a Hamiltonian system derived from the swimmers Fokker-Planck equation. Using the semiclassical technique, we compute (i) the steady-state orientation distribution of swimmers with rotational diffusion and tumbling and (ii) the probability that a diffusive swimmer crosses a one-way barrier. The semiclassical results compare favorably with Monte Carlo calculations.
This work deals with the closed-loop control of streaky structures induced by free-stream turbulence in a zero-pressure gradient, transitional boundary layer, by means of localized sensors and actuators. A linear quadratic gaussian regulator is consi dered along with a system identification technique to build reduced-order models for control. Three actuators are developed with different spatial supports, corresponding to a baseline shape with only vertical forcing, and to two other shapes obtained by different optimization procedures. A computationally efficient method is derived to obtain an actuator which aims to induce the exact structures which are inside the boundary layer, given in terms of their first spectral proper orthogonal decomposition mode, and an actuator that maximizes the energy of induced downstream structures. Two free-stream turbulence levels were evaluated, corresponding to 3.0% and 3.5%, and closed-loop control is applied in large-eddy simulations of transitional boundary layers. All three actuators lead to significant delays in the transition to turbulence and were shown to be robust to mild variations in the free-stream turbulence levels. Differences are understood in terms of the SPOD of actuation and FST-induced fields along with the causality of the control scheme. The actuator optimized to generate the leading downstream SPOD mode, representing the streaks in the open-loop flow, leads to the highest transition delay, which can be understood due to its capability of closely cancelling structures in the boundary layer. However, it is shown that even with the actuator located downstream of the input measurement it may become impossible to cancel incoming disturbances in a causal way, depending on the wall-normal position of the output and on the actuator considered, which limits sensor and actuator placement capable of good closed-loop performance.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا