ترغب بنشر مسار تعليمي؟ اضغط هنا

The Role of Variability in Transport for Large-Scale Flow Dynamics

209   0   0.0 ( 0 )
 نشر من قبل Stephen Wiggins
 تاريخ النشر 2014
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We develop a framework to study the role of variability in transport across a streamline of a reference flow. Two complementary schemes are presented: a graphical approach for individual cases, and an analytical approach for general properties. The spatially nonlinear interaction of dynamic variability and the reference flow results in flux variability. The characteristic time-scale of the dynamic variability and the length-scale of the flux variability in a unit of flight-time govern the spatio-temporal interaction that leads to transport. The non-dimensional ratio of the two characteristic scales is shown to be a a critical parameter. The pseudo-lobe sequence along the reference streamline describes spatial coherency and temporal evolution of transport. For finite-time transport from an initial time up to the present, the characteristic length-scale of the flux variability regulates the width of the pseudo-lobes. The phase speed of pseudo-lobe propagation averages the reference flow and the flux variability. In contrast, for definite transport over a fixed time interval and spatial segment, the characteristic time-scale of the dynamic variability regulates the width of the pseudo-lobes. Generation of the pseudo-lobe sequence appears to be synchronous with the dynamic variability, although it propagates with the reference flow. In either case, the critical characteristic ratio is found to be one, corresponding to a resonance of the flux variability with the reference flow. Using a kinematic model, we demonstrate the framework for two types of transport in a blocked flow of the mid-latitude atmosphere: across the meandering jet axis and between the jet and recirculating cell.

قيم البحث

اقرأ أيضاً

By utilizing diffusion maps embedding and transition matrix analysis we investigate sparse temperature measurement time-series data from Rayleigh--Benard convection experiments in a cylindrical container of aspect ratio $Gamma=D/L=0.5$ between its di ameter ($D$) and height ($L$). We consider the two cases of a cylinder at rest and rotating around its cylinder axis. We find that the relative amplitude of the large-scale circulation (LSC) and its orientation inside the container at different points in time are associated to prominent geometric features in the embedding space spanned by the two dominant diffusion-maps eigenvectors. From this two-dimensional embedding we can measure azimuthal drift and diffusion rates, as well as coherence times of the LSC. In addition, we can distinguish from the data clearly the single roll state (SRS), when a single roll extends through the whole cell, from the double roll state (DRS), when two counter-rotating rolls are on top of each other. Based on this embedding we also build a transition matrix (a discrete transfer operator), whose eigenvectors and eigenvalues reveal typical time scales for the stability of the SRS and DRS as well as for the azimuthal drift velocity of the flow structures inside the cylinder. Thus, the combination of nonlinear dimension reduction and dynamical systems tools enables to gain insight into turbulent flows without relying on model assumptions.
We theoretically investigate the effect of random fluctuations on the motion of elongated microswimmers near hydrodynamic transport barriers in externally-driven fluid flows. Focusing on the two-dimensional hyperbolic flow, we consider the effects of translational and rotational diffusion as well as tumbling, i.e. sudden jumps in the swimmer orientation. Regardless of whether diffusion or tumbling are the primary source of fluctuations, we find that noise significantly increases the probability that a swimmer crosses one-way barriers in the flow, which block the swimmer from returning to its initial position. We employ an asymptotic method for calculating the probability density of noisy swimmer trajectories in a given fluid flow, which produces solutions to the time-dependent Fokker-Planck equation in the weak-noise limit. This procedure mirrors the semiclassical approximation in quantum mechanics and similarly involves calculating the least-action paths of a Hamiltonian system derived from the swimmers Fokker-Planck equation. Using the semiclassical technique, we compute (i) the steady-state orientation distribution of swimmers with rotational diffusion and tumbling and (ii) the probability that a diffusive swimmer crosses a one-way barrier. The semiclassical results compare favorably with Monte Carlo calculations.
We derive the equations of motion for the dynamics of a porous media filled with an incompressible fluid. We use a variational approach with a Lagrangian written as the sum of terms representing the kinetic and potential energy of the elastic matrix, and the kinetic energy of the fluid, coupled through the constraint of incompressibility. As an illustration of the method, the equations of motion for both the elastic matrix and the fluid are derived in the spatial (Eulerian) frame. Such an approach is of relevance e.g. for biological problems, such as sponges in water, where the elastic porous media is highly flexible and the motion of the fluid has a primary role in the motion of the whole system. We then analyze the linearized equations of motion describing the propagation of waves through the media. In particular, we derive the propagation of S-waves and P-waves in an isotropic media. We also analyze the stability criteria for the wave equations and show that they are equivalent to the physicality conditions of the elastic matrix. Finally, we show that the celebrated Biots equations for waves in porous media are obtained for certain values of parameters in our models.
The advection of passive tracers in a system of 4 identical point vortices is studied when the motion of the vortices is chaotic. The phenomenon of vortex-pairing has been observed and statistics of the pairing time is computed. The distribution exhi bits a power-law tail with exponent $sim 3.6$ implying finite average pairing time. This exponents is in agreement with its computed analytical estimate of 3.5. Tracer motion is studied for a chosen initial condition of the vortex system. Accessible phase space is investigated. The size of the cores around the vortices is well approximated by the minimum inter-vortex distance and stickiness to these cores is observed. We investigate the origin of stickiness which we link to the phenomenon of vortex pairing and jumps of tracers between cores. Motion within the core is considered and fluctuations are shown to scale with tracer-vortex distance $r$ as $r^{6}$. No outward or inward diffusion of tracers are observed. This investigation allows the separation of the accessible phase space in four distinct regions, each with its own specific properties: the region within the cores, the reunion of the periphery of all cores, the region where vortex motion is restricted and finally the far-field region. We speculate that the stickiness to the cores induced by vortex-pairings influences the long-time behavior of tracers and their anomalous diffusion.
We describe a new method for computing coherent Lagrangian vortices in two-dimensional flows according to any of the following approaches: black-hole vortices [Haller & Beron-Vera, 2013], objective Eulerian Coherent Structures (OECSs) [Serra & Haller , 2016], material barriers to diffusive transport [Haller et al., 2018, Haller et al., 2019], and constrained diffusion barriers [Haller et al., 2019]. The method builds on ideas developed previously in [Karrasch et al., 2015], but our implementation alleviates a number of shortcomings and allows for the fully automated detection of such vortices on unprecedentedly challenging real-world flow problems, for which specific human interference is absolutely infeasible. Challenges include very large domains and/or parameter spaces. We demonstrate the efficacy of our method in dealing with such challenges on two test cases: first, a parameter study of a turbulent flow, and second, computing material barriers to diffusive transport in the global ocean.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا