ترغب بنشر مسار تعليمي؟ اضغط هنا

A classical measure of evidence for general null hypotheses

186   0   0.0 ( 0 )
 نشر من قبل Alexandre Patriota
 تاريخ النشر 2012
  مجال البحث الاحصاء الرياضي
والبحث باللغة English




اسأل ChatGPT حول البحث

In science, the most widespread statistical quantities are perhaps $p$-values. A typical advice is to reject the null hypothesis $H_0$ if the corresponding p-value is sufficiently small (usually smaller than 0.05). Many criticisms regarding p-values have arisen in the scientific literature. The main issue is that in general optimal p-values (based on likelihood ratio statistics) are not measures of evidence over the parameter space $Theta$. Here, we propose an emph{objective} measure of evidence for very general null hypotheses that satisfies logical requirements (i.e., operations on the subsets of $Theta$) that are not met by p-values (e.g., it is a possibility measure). We study the proposed measure in the light of the abstract belief calculus formalism and we conclude that it can be used to establish objective states of belief on the subsets of $Theta$. Based on its properties, we strongly recommend this measure as an additional summary of significance tests. At the end of the paper we give a short listing of possible open problems.



قيم البحث

اقرأ أيضاً

We develop a Nonparametric Empirical Bayes (NEB) framework for compound estimation in the discrete linear exponential family, which includes a wide class of discrete distributions frequently arising from modern big data applications. We propose to di rectly estimate the Bayes shrinkage factor in the generalized Robbins formula via solving a scalable convex program, which is carefully developed based on a RKHS representation of the Steins discrepancy measure. The new NEB estimation framework is flexible for incorporating various structural constraints into the data driven rule, and provides a unified approach to compound estimation with both regular and scaled squared error losses. We develop theory to show that the class of NEB estimators enjoys strong asymptotic properties. Comprehensive simulation studies as well as analyses of real data examples are carried out to demonstrate the superiority of the NEB estimator over competing methods.
In the multiple testing context, a challenging problem is the estimation of the proportion $pi_0$ of true-null hypotheses. A large number of estimators of this quantity rely on identifiability assumptions that either appear to be violated on real dat a, or may be at least relaxed. Under independence, we propose an estimator $hat{pi}_0$ based on density estimation using both histograms and cross-validation. Due to the strong connection between the false discovery rate (FDR) and $pi_0$, many multiple testing procedures (MTP) designed to control the FDR may be improved by introducing an estimator of $pi_0$. We provide an example of such an improvement (plug-in MTP) based on the procedure of Benjamini and Hochberg. Asymptotic optimality results may be derived for both $hat{pi}_0$ and the resulting plug-in procedure. The latter ensures the desired asymptotic control of the FDR, while it is more powerful than the BH-procedure. Finally, we compare our estimator of $pi_0$ with other widespread estimators in a wide range of simulations. We obtain better results than other tested methods in terms of mean square error (MSE) of the proposed estimator. Finally, both asymptotic optimality results and the interest in tightly estimating $pi_0$ are confirmed (empirically) by results obtained with the plug-in MTP.
Randomization (a.k.a. permutation) inference is typically interpreted as testing Fishers sharp null hypothesis that all effects are exactly zero. This hypothesis is often criticized as uninteresting and implausible. We show, however, that many random ization tests are also valid for a bounded null hypothesis under which effects are all negative (or positive) for all units but otherwise heterogeneous. The bounded null is closely related to important concepts such as monotonicity and Pareto efficiency. Inverting tests of this hypothesis yields confidence intervals for the maximum (or minimum) individual treatment effect. We then extend randomization tests to infer other quantiles of individual effects, which can be used to infer the proportion of units with effects larger (or smaller) than any threshold. The proposed confidence intervals for all quantiles of individual effects are simultaneously valid, in the sense that no correction due to multiple analyses is needed. In sum, we provide a broader justification for Fisher randomization tests, and develop exact nonparametric inference for quantiles of heterogeneous individual effects. We illustrate our methods with simulations and applications, where we find that Stephenson rank statistics often provide the most informative results.
We present a new approach for inference about a log-concave distribution: Instead of using the method of maximum likelihood, we propose to incorporate the log-concavity constraint in an appropriate nonparametric confidence set for the cdf $F$. This a pproach has the advantage that it automatically provides a measure of statistical uncertainty and it thus overcomes a marked limitation of the maximum likelihood estimate. In particular, we show how to construct confidence bands for the density that have a finite sample guaranteed confidence level. The nonparametric confidence set for $F$ which we introduce here has attractive computational and statistical properties: It allows to bring modern tools from optimization to bear on this problem via difference of convex programming, and it results in optimal statistical inference. We show that the width of the resulting confidence bands converges at nearly the parametric $n^{-frac{1}{2}}$ rate when the log density is $k$-affine.
From an optimizers perspective, achieving the global optimum for a general nonconvex problem is often provably NP-hard using the classical worst-case analysis. In the case of Coxs proportional hazards model, by taking its statistical model structures into account, we identify local strong convexity near the global optimum, motivated by which we propose to use two convex programs to optimize the folded-concave penalized Coxs proportional hazards regression. Theoretically, we investigate the statistical and computational tradeoffs of the proposed algorithm and establish the strong oracle property of the resulting estimators. Numerical studies and real data analysis lend further support to our algorithm and theory.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا